mini_ker manual

for mini_ker version 1.01.00.1, 14 November 2005

The TEF Collaboration

Copyright (C) 2004, 2005 Alain Lahellec
Copyright (C) 2004, 2005 Patrice Dumas
Copyright (C) 2004, Stéphane Hallegatte

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover text and with no Back-Cover Text. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

Table of Contents

Introduction.................. ... 1
Intended audience. 1
Reading guide 1

1 An overview of the TEF formalism.......... 2
1.1 Cell and transfer equations................. 2
1.2 Linearization and discretization in the TEF.................... 2

2 Mini_ker model programming 3
2.1 General structure of thecode................................. 3
2.2 Mini_ker programming illustrated............................. 3

2.2.1 All you need to know about mortran and cmz directives ... 3
2.2.2 Entering model size.............. 4
2.2.3 Entering model equation and parameters)
2.3 Symbolic model description 8
2.4 Setting and running a model L. 9
2.4.1 Setup a model and compile with cmz..................... 9
2.4.2 Setup a model and compile with make.................... 9
2.4.3 Running a simulation and using the output.............. 10
2.4.4 Doing graphiCsoiiet 11
2.5 Controlling therun............. i 11
2.5.1 Executing code at the end of each time step 11
2.5.2 Controlling the printout and data output 12

3 Advanced mini_ker programming.......... 13
3.1 Overview of additional features setting....................... 13
3.2 Calling the model code i 13

3.2.1 Turning the model into a subroutine 13
3.2.2 Calling the model subroutine 14
3.3 Describing 1D gridded model............. 14
3.3.1 Setting dimensions for 1D gridded model 15
3.3.2 1D gridded Model coding. 16
3.4 Double Precision 18
3.5 Parameters 18
3.6 Observations and data..............., 19
3.6.1 Observationsccoueiiie i 19
3.6.2 Data.... ..o 20
3.7 Advanced use of mini_ker with make......................... 20
3.7.1 Make variables 20
3.7.2 Rules 22
3.73 Linkingrule..... 22

3.8 Programming with cmz directives......................... ... 22

3.8.1 Files with cmz directives with make 22
3.8.2 Cmz directives used with mini_ker 23

4 Dynamic analysis of systems in mini_ker ... 24

4.1 Automatic sensitivity computation....................... ..., 24
4.1.1 Initial state sensitivity 24
4.1.2 Sensitivity to a pulse or a step transfer perturbation...... 25
4.1.3 Extended Sensitivity studies.................. 25

4.1.3.1 Four different types of sensitivity 26
4.1.4 Sensitivity to a parameter 26
4.1.5 Advance matrix sensitivity L. 27

4.2 Adjoint model and optimisation with mini_ker................ 27
4.2.1 Overview of optimisation with mini_ker.................. 27
4.2.2 Control laws.o 28
4.2.3 Cost function coding 28
4.2.4 Sensitivity of cost function to parameters................ 29

4.3 Kalman filter 29
4.3.1 Coding the Kalman filter............................... 30

4.3.1.1 Kalman filter vectors dimensions 30
4.3.1.2 Error and observation matrices..................... 31
4.3.2 Kalman filter run and output 32
4.3.2.1 Feeding the observations to the model 32
4.3.2.2 Kalman filter results............................... 32
4.3.3 Executing code after the analysis 32

4.4 Feedback gain......... ... 32
4.4.1 Specifying the Borel sweep 33
4.4.2 Borel sweepresults 34

4.5 Stability analysis of fastest modes 34
4.5.1 Singular Value Decomposition with cmz 35
4.5.2 Singular Value Decomposition with make................ 35
4.5.3 Singular Value Decomposition run and output 35

4.6 Generalized linear tangent system analysis 35
4.6.1 Generalized tangent linear system with cmz.............. 36
4.6.2 Generalized tangent linear system with make 36
4.6.3 Generalized tangent linear system analysis run and output

.. 36
Conceptsindexcovvviiinnnnnnnns 37

ii

Appendix A Installation.................... 41

A.1 Programming environments.oouiiiinaaa... 41
A2 Common requiSitesooiiiiiiin . 41
A3 Miniker withemz......... 41
A4 Mini_ker withmake................ 41
A.4.1 Additional requirements for Mini_ker with make......... 41

A.4.2 Configuration 42

A.4.3 Installation with make................................. 43
Appendix B Cmz directives reference 44
B.1 Cmz directives general syntax..................cooeiiia... 44
B.2 Conditional expressionsoiiiiiiiiiiii. 44
B.3 File introduction directives 44
B.4 Conditional directives i 45
B.5 File inclusion directive 47
B.6 The ‘self’ directive...........oiiiiiii i, 47
Appendix C Copying This Manual 48
C.1 GNU Free Documentation License 48

C.1.1 ADDENDUM: How to use this License for your documents
.. 54

Introduction 1

Introduction

Mini_ker is a modeling tool, built especially in order to implement models written following
the TEF (Transfer Evolution Formalism) formalism, a mathematical framework for system
analysis and simulation. Mini_ker allows for timewise simulation, system analysis, adjoint
computation, Kalman filtering and more.

Mini_ker uses a fortran preprocessor, mortran, designed in the 1970’s, to ease model
writing. For example partial derivatives can be symbolicaly determined by mortran. For the
selection of compile-time features another set of preprocessor directives, the cmz directives
are used. In most cases the user don’t need to know anything about that preprocessing that
occurs behind the scene, he simply writes down the equations of his model and he is done.

A comprehensive description of the TEF formalism in available on
http://www.1lmd. jussieu.fr/Z00M/documents.dir/tef-GB-partA5.pdf). The
Mini_ker software is a reduced version of ZOOM, that can only handle a hundreds of
variables, but is much easier to use.

Intended audience

The reader should have notions in system dynamics. Moreover a minimal knowledge of
programmation and fortran is required. What is required is a basic understandic of variable
types, affectation and fortran expressions.

Reading guide

The first chapter is a brief overview of the TEF. The following describes how to write,
compile and run a model in mini_ker. Reading the sections of this chapter up to the section
Symbolic model description is required to know the syntax of model description in Mini_ker.

Reading up to the section Controlling the run is required to be able to use mini_ker. In
this section it is assumed that mini_ker is properly setup. The installation instructions are
in the appendix at Appendix A [Installation|, page 41.

The next chapter describes advanced features, first a general introduction to features
settings and then a description of other model description related features.

The next chapter describes system analysis tools available with mini_ker. The sections
are independant and each describes how to use a specific feature. If you plan on using these
features, you should also read Section 3.1 [Overview of feature setting], page 13.

In the appendix the instructions for the installation are described (see Appendix A [In-
stallation], page 41). 2 programming environment to compile the model are available, with
cmz and make, you can skip the method description you are not interested in. A refer-
ence for the usefull cmz directives is also in the appendix (see Appendix B [Cmz directives
reference|, page 44).

http://www.lmd.jussieu.fr/penalty z@ ZOOM/documents.dir/tef-GB-partA5.pdf
http://www.lmd.jussieu.frpenalty z@ /zoom

Chapter 1: An overview of the TEF formalism 2

1 An overview of the TEF formalism

The TEF (Transfer Evolution Formalism) is based on partitionning and recoupling of model
subsystems. It allows the study of the coupling between subsystems by the mean of a
linearization and a time discretization.

1.1 Cell and transfer equations

In the TEF, a model is mathematically represented by a set of equations corresponding to
two kinds objects:

1. cells which are elementary models and correspond to state equations such as:
Om(t) = g(n(t), (1))

1 represent the state variables of cells and the ¢ represent the dependent boundary
conditions, i.e. the variables considered as boundary conditions by a cell, but depending
upon the complete model state. This dependent boundary conditions are required to
make the cells correspond to well-posed problems.

2. transfers which are determined by constraint equations such as:

1.2 Linearization and discretization in the TEF

The relations between sub-systems is excessively difficult to exhibit when having to cope
with non-linear system. In the TEF, the TLS (Tangent Linear System) is constructed
along the trajectory. One consider the system over a small portion along the trajectory,
say between t and t + 6t. The variation 7 of n and dp of ¢ is obtained through Taylor
expansion.

A time scheme is then applied to the TLS (a Crank-Nicholson scheme), to obtain an
algebraic system describing the relationships between variations of transfers and cells vari-

' & B -()

The blocks appearing in the matrix are constructed with partial derivative of f and g,
and with d¢. From this system the elimination of dn leads to another formulation giving
the coupling between transfers, and allows for the dp computation. The §¢ value is then
substitued in dn.

Chapter 2: Mini_ker model programming 3

2 Mini_ker model programming

mini_ker works by combining the model specification code given by the user and other source
files provided in the package. The code is generated, preprocessed, compiled, linked and
the resulting program can be run to produce the model trajectory and dynamic analysis.

The code provided in the package contains a principal program, some usefull subrou-
tines and pieces of code called sequences combined with the different codes. Among those
sequences some hold the code describing the model, these sequences are to be written by
the user (sequences are similar with include files).

2.1 General structure of the code

The sequences used to enter model description hold the vector dimensions, mathemati-
cal formulae for each cell and transfer components, time step steering. During the code
generation stage, cmz directives are preprocessed, then the user pseudo-Fortran instruc-
tions are translated by mortran using macros designed to generate in particular all Fortran
instructions computing the Jacobian matrices used in TEF modelling.

A first users’ sequence to program is: ‘dimetaphi’ where the model dimensions are given,
for the two vector-array eta(.) for cells and ££(.) for transfers (see Section 2.2.2 [Entering
model size|, page 4). The sequence ‘zinit’ contains the mathematical formulation of the
models (see Section 2.2.3 [Model equation and parameters|, page 5). Another sequence
‘zsteer’) is introduced at the end of the time step advance of the simulation, where the
user can monitor the time step values, printing levels, perform numerical tests and so on
(see Section 2.5.1 [Executing code at the end of each time step], page 11).

2.2 Mini_ker programming illustrated

The general TEF system writes:

am(t) = g(n(t), p(t))

To illustrate the model description in mini_ker a simple predator-prey model of Lotka-
Voltera is used. This model can be written in the following TEF form:

8t"7prey = anprey — GPmeet
atnpred = —Cllpred + COmeet

Pmeet = TpreyTlpred

with two cell equations, i.e. state evolution of the prey and predator groups, and one
transfer accounting for the meeting of individuals of different group.

2.2.1 All you need to know about mortran and cmz directives

The first stage of code generation consists in cmz directives preprocessing. Cmz directives
are used for conditional selection of features, and sequence inclusion. At that point you
don’t need to know anything about these directives. They are only usefull if you want to

Chapter 2: Mini_ker model programming 4

take advantage of advanced features (see Section 3.8 [Programming with cmz directives],
page 22).

The code in sequences is written in mortran and the second stage of code generation
consists in mortran macro expansion. The mortran language is described in its own manual,
here we only explain the very basics which is all you need to use mini_ker. mortran is almost
fortran, the differences are the following:

e The code is free-form, and each statement should end with a semi-colon ;.
e Comments may be introduced by an exclamation mark ! at the beginning of a line, or
appear within double quotes ".
e [t is possible to use blocs, for do or if for example, and they are enclosed within ‘<’
and >’.
The following fictious code is legal mortran:

real
param;
param = 3.; ff(1) = f£f(3)**eta(l); "a comment"
! a line comment
do inode=1,n_node <eta_move(inode)=0.01; eta_speed(inode)=0.0;>;

Thanks to mortran the model code is very simply specified, as you’ll see next.

2.2.2 Entering model size

The dimension of the model is entered in the sequence ‘dimetaphi’, using the fortran
parameter np for eta(.) and mp for ££(.). For this model, we have two cell components
and only one transfer.

parameter (np=2,mp=1);
You should not change the layout of the parameter statement as the mortran preprocessor
matches the line.

You also have to provide other parameters even if you don’t have any use for them. If
you don’t it will trigger fortran errors. It includes the maxstep parameter that can have
any value but 0, 1p that should be 0, and nxp, nyp and nzp that should also be 0. The
layout is the following:

parameter (1p=0);
parameter (nxp=0,nyp=0,nzp=0);
parameter (maxstep=100 000) ;

You can also add your own variable definitions in this sequence. For example if you want
to declare the variable anint as integer the ‘dimetaphi’ sequence could look like:

parameter (np=2,mp=1);
parameter (1p=0);

parameter (nxp=0,nyp=0,nzp=0);
parameter (maxstep=100 000) ;

integer anint;

Chapter 2: Mini_ker model programming 5)

2.2.3 Entering model equation and parameters

The model equation and parameters and some mini_ker parameters are entered in the
‘zinit’ sequence. The whole listing is outputed to give an idea of the model length, then
the example is detailed.

Vit to o toto o fotaTo oo to o To o To o foto o To
! Parameters

Vol lolololoToToTo o ToTo oo oToTo oo ote

| required parameters

dt=.01; "initial time-step"
nstep=10 000; "number of iterations along the trajectory"
time=0. ; "time initialisation "

| model parameters
apar = 1.5;
cpar = 0.7;

| miscalleneous parameters
modzprint = 1000; "printouts frequency"

PLimtok, 2 sokokkorokkokokskokkokokkokkokok ok kok kb Kok kb okokkokokok 7
print*,’Lotka-Volterra model with parameters as:’;
z_pr: apar,bpar;

PTADT* , 7 ssrksrksroksrok ok ok kokkokkokkokkok ok ok ok Kok ok ok Kok Kok 7 5

Vo TS oo to To o To oo oo to Joto o oo To o
! Transfer definition
U To Tt o oo Toto To foto oo To Fo o To o Fo oo
! meeting of prey and predator
f_set Phi_tef(1) = eta(l)*eta(2); "transfer definition"

Vo To Tt o foTo Toto To Foto oo To Fo o To o Fo oo
! Cell definition
VIS to oo to o fotaTo oo to o To o To o foto o o

I eta(l) : pray
I eta(2) : predator

f_set deta_tef(1)
f_set deta_tef(2)

apar*eta(l)-apar*ff(1); "cell time advance"
- cpar*eta(2) + cparxff(l); "definition "

VT TS o foTo Toto To foto oo To Fo o To o Fo oo
! Initial states

V96%6%o o ToTo oo o ToTo o o ToTo o o o To o o

eta(l) = 1.;

Chapter 2: Mini_ker model programming 6

eta(2) = 1.;

OPEN(50,FILE="title.tex’,STATUS=’UNKNOWN’) ; "title file"
write(50,5000) apar,cpar;
5000;format (’Lotka-Volterra par:’,2F4.1);
Variables and model parameters

The following variables are required:

dt The time step.
time Model time initialisation.
nstep Number of iterations along the trajectory.

There are no other required variables. It is possible to add more variables, though (and
likewise it is possible to write any fortran or mortran code). For example a variable called
modzprint is traditionnaly used for the frequency of the printout of the model matrix and
vectors during the model run (see Section 2.5.2 [Controlling the printout and data output],
page 12).

In the predator-prey example there are also two model parameters. The fortran variables
are called here apar for a and cpar for c. The predator-prey code variable initializations
finally reads

VS ToTo oo To o To o To o To o To o Jo o Jo o Jo o o
! Parameters

V9oT6To o ToTo o 1o o ToTo o o o ToTo o o o To o o

dt=.01;
nstep=10 000;
time=0. ;

! model parameters
apar = 1.5;
cpar = 0.7;

modzprint = 1000;

Model equations

The model equations for cells and transfers are entered using a mortran macro, f_set,
setting the eta(.) evolution with deta_tef(.) and the transfer definitions £f(.) with
Phi_tef(.).

f_set Phi_tef(i) = fleta(.),f{.)) [Macro]
This macro defines the transfer i static equation. f is a fortran expression
which may be function of cell state variables, ‘eta(1)’...‘eta(np)’ and transfers

FE(1)7. . ff (mp) .

In the case of the predator prey model, the transfer definition for ¢,,cq; is:
f_set Phi_tef(1l) = eta(l)*eta(2);

Chapter 2: Mini_ker model programming 7

f_set deta_tef(i) = g(eta(i),f{.)) [Macro]
This macro defines the cell i time evolution model. g is a expression which
may be function of cell state variables, ‘eta(1)’...‘eta(np)’ and transfers

“F£(1)7...Ff (mp) .

The two cell equations of the predator-prey model are, with index 1 for the prey (7,rey)
and index 2 for the predator (7,.cq):
f_set deta_tef(1l) = apar*eta(l)-apar*ff(1);
f_set deta_tef(2) = - cparxeta(2) + cpar*ff(1l);
The whole model is:
VS ToToToTo ToTo ToTo To o ToTo To o To o ToJo To o o
I Transfer definition
VYoo o To o To o To o To o To o To o Jo o Jo o Jo o o
| rencontres (meeting)
f_set Phi_tef(1) = eta(l)*eta(2);

VT to o toto o fo S To oo to o To o To o o to o o
I Cell definition
VT Tt o foto ot To foto oo To Fo o to o Fo oo

I eta(l) : prey
I eta(2) : predator

f_set deta_tef(l) = apar*eta(l)-apar*ff(1);
f_set deta_tef(2) = - cparxeta(2) + cpar*ff(1);

Starting points

The cells require starting points. The transfers may also have starting points although they
are recomputed from the cell values.

In the predator-prey model the starting points for cells are:

! initial state

®
ct
o
~
N
A —a
|
-

When there is a non trivial implicit relationship between the transfers in the model it
may be usefull or even necessary to set some transfers to non-zero values. This difficulty
is only relevant for the first step. The uninitialized transfers have a zero value, so an
initialization to another value may help avoiding singular functions or matrix and ensure
convergence.

title file
For some graphics generation a file with name ‘title.tex’ is required which sets the title.
The following instructions take care of that:

OPEN(50,FILE="title.tex’,STATUS="UNKNOWN’) ;
write(50,5000) apar,cpar;

Chapter 2: Mini_ker model programming 8

5000;format (’Lotka-Volterra par:’,2F4.1);

close(50);

In that case the parameter values are written down, to differenciate between different
runs.

2.3 Symbolic model description

A language for the symbolic description of a model is also available, which eventually will
generate the same Fortran code as the basic language. In that case the coordinate of the
states eta(.) and the transfers ££(.) are not index with numbers but are given a name.
The model equations are entered in two mortran blocks, one for the transfers, the other for
the cells.
set_Phi introduces the transfer block, set_eta introduces the cells block. In each block
the couple variable, function are specified. For transfers the function defines the transfer
itself while for cells the function describes the cell evolution. The variable is specified with
var:, the function is defined with fun:.
The same above example can be equivalently entered as:

V0o To o Too o To o o o To o o Joo o To o o o To o

| Transfer definition

V0o o ToToToo o To o To o o To o To o o oo Jo o o

! rencontre (meeting)

set_Phi

< var: ff_interact, fun: f_interact = eta_prey*eta_pred;

>3
V0o o ToToTo o o To o To o o To o To o o o o Jo o o
I Cell definition
V9o To o Too o To o o o To o o Joo o To o o o To o

set_eta
< var: eta_prey, fun: deta_prey = apar*eta_prey - apar*ff_interact;
var: eta_pred, fun: deta_pred = - cpar*eta_pred + cpar*ff_interact;

>3
Whenever the user is not concerned by giving a specific name to a component function,
it is possible to specify the equation only with eqn:. Therefore the user may replace an
instruction as:
var: ff_dump,
fun: f_dump = - rdx(eta_speed - eta_speed_limiting);
by:
eqn: ff_dump = - rdx(eta_speed - eta_speed_limiting);
In that case, the unnamed function will take the name of the defined variable preceded
by the ‘$’ sign: $£f_dump.
It is also possible to use the basic instructions f_set in the same program, but one has
to be careful and do not overwrite the same vector components as the one entered using
the set_ instructions.

Chapter 2: Mini_ker model programming 9

The correspondence with basic components are printed out at execution time as ex-
plained in Section 2.4.3 [Running a simulation and using the output], page 10.

2.4 Setting and running a model

In this section it is assumed that a programming environment has been properly setup.
This environment may use either cmz or make to drive the preprocessing and compilation.
You can skip the part related with the environment you don’t use.

For instructions regarding the installation, see Appendix A [Installation], page 41.

2.4.1 Setup a model and compile with cmz

The user defined sequences are ‘KEEP’ in the cmz world. The most common organization
is to have a cmz file in a subdirectory of the directory containing the mini_ker cmz file. In
this cmz file there should be a ‘PATCH’ called ‘zinproc’ with the KEEPs within the patch.
The KEEPs must be called ‘$zinit’ and ‘$dimetaphi’.

From within cmz in the directory of your model the source extraction, compilation and
linking should be triggered by mod. This macro uses the ‘selseq.kumac’ information to find
the mini_ker cmz file. mod should create a directory with the same name than the cmz file,
‘mymodel/’ in our example. In this directory there is another directory ‘cfs/’ containing
the sources extracted from the cmz file.

The file ‘mymodel_o.tmp’ contains all the mortran code generated by cmz with the
sequences substituted, including the ‘$zinit’ and ‘$dimetaphi’ sequences. The fortran
produced by the preprocessing and splitting of this file is in files with the traditional . f’
suffix. The principal program is in ‘principal.f’.

mod also triggers compilation and linking. The object files are in the same ‘cfs/’ directory
and the executable is in the ‘mymodel/’ directory, with name ‘mymodel.exe’.

2.4.2 Setup a model and compile with make

With make, the sequences are files ending with ‘.mti’ (for mortran include files), called
‘zinit.mti’ and ‘dimetaphi.mti’. They are included by mortran in other source files.
You also need a ‘Makefile’ to drive the compilation of the model.

If you don’t need additional code or libraries to be linked with your model you have two
alternatives.

1. The simplest alternative is to run the start_miniker script with argument the model
file name. It should copy a ‘zinit.mti’ and ‘dimetaphi.mti’ files ready to be edited
and a Makefile ready to compile the model. For the predator prey model, for example,
you could run

$ start_miniker predator

2. Otherwise you can copy the Makefile from ‘template/Makefile’ in the directory con-
taining the sequences. You should then change the compiled model file name, by
changing the value of the model_file_name variable to the model file name of your
choice in the Makefile. It is set to ‘mymodel’ in template. For the predator-prey model
it could be set like

model_file_name = predator

If you want to put the executable model file in another directory, you could set

Chapter 2: Mini_ker model programming 10

model_file_name = some_dir/predator

The other items set in the default Makefile should be right.

The preprocessing and the compilation are launched with
make all

The mortran files are generated by the cmz directive preprocessor from files found in
the package source directories. The mortran files end with ‘.mtn’ for the main files and
‘.mti’ for include files. They are output in the current directory. The mortran preprocessor
then preprocess these mortran files and includes the sequences. The resulting fortran is
also in the current directory, in files with a ‘.f’ suffix. Some fortran files ending with ‘.F’
may also be created by the cmz directive preprocessor. The object files resulting from the
compilation of all the fortran files (generated from mortran or directly from fortran files)
are there too.

In case you want to override the default sequences or a subroutine file you just have to
create it in your working directory along with the ‘zinit.mti’ and ‘dimetaphi.mti’. For
example you could want to create a ‘zsteer.mti’ file (see Section 2.5.1 [Executing code
at the end of each time step], page 11), a ‘zcmd_law.mti’ file (see Section 4.2.2 [Control
laws|, page 28), a ‘monitor.f’ file (see Section 3.2.1 [Turning the model into a subroutine],
page 13) to take advantage of features presented later in this manual.

More in-depth discussion of make and mini_ker is covered in Section 3.7 [Advanced use
of mini_ker with make], page 20. For example it is also possible to create files that are to be
preprocessed by the cmz directive preprocessor, this advanced use is more precisely covered
in Section 3.8 [Programming with cmz directives|, page 22.

2.4.3 Running a simulation and using the output

Once compiled the model is ready to run, it only has to be executed. On standard output
informations about the states, transfers, tangent linear system and other jacobian matrices
are printed. For example the predator-prey model could be executed with:

./predator > result.lis

In case of a model entered symbolically (see Section 2.3 [Symbolic model description],
page 8) the correspondance between the symbolic variables and the basic vectors and func-
tions are printed at run time:

———————————————— Informing on Phi definition --———----------—-
Var-name, Function-name, index in ff vector
ff_interact f_interact 1

——————————————— Informing on Eta definition --——-—------------
Var-name, Function-name, index in eta vector
eta_prey deta_prey 1
eta_pred deta_pred 2

Chapter 2: Mini_ker model programming 11

Outputs are in also in ‘.data’ files. Each data file has the time variable values as
first column!. Following columns give the values of eta(.) in ‘res.data’, dEta(.) in

‘dres.data’ — the step by step variation of eta(.) —and ££(.) in ‘tr.data’.

Along the simulation the TEF jacobian matrices are computed. A transfer variables
elimination process also leads to the definition of the classical state advance matrix of the
system (the corresponding array is aspha(.,.) in the code). This matrix is output in
the file ‘aspha.data’ that is used to post-run dynamics analyses. The matrix columns are
written on each line, column by column. See Section 4.5 [Stability analysis of fastest modes],
page 34. See Section 4.6 [Generalized tangent linear system analysis|, page 35. It is not
used in the solving process.

Other ‘.data’ files will be described later.

2.4.4 Doing graphics

The format of the ‘.data’ files are coherent with GNU graphics, that is the data are simply
separated with spaces. The files can be vizualised with gnuplot, for example. To plot
eta(n), the gnuplot statement is:

plot "res.data" using 1:(a+1)
The similar one for £f(n):
plot "tr.data" using 1:(n+1)

For people using PAW, the CERN graphical computer code, mini_ker prepares kumacs
that allow to read process the ‘.data’ files in the form of n-tuples (see the PAW manual for
more information). These n-tuples are ready to use only for vector dimension of at most 10
(including the variable time). These kumacs are overwritten each time the model is run.

2.5 Controlling the run

It is possible to add code that will be executed at the end of each time step. It is also
possible to specify which time step leads to a printout on standard output. For maximal
control, the code running te model may be turned into a subroutine to be called from
another fortran program, this possibility is covered in Section 3.2 [Calling the model code],
page 13.

2.5.1 Executing code at the end of each time step

The code in the sequence ‘zsteer’ is executed at the end of each time step. It is possible
to change the time step length (variable dt) verify that the non linearity are not too big,
or perform discontinuous modifications of the states.

Many variables are available, including
istep The step number.

couplage(.)
The coupling matrix between transfers.

! ‘dres.data’ has another time related variable as second column: dt, the time step that can vary in the
course of a simulation.

Chapter 2: Mini_ker model programming 12

2.5.2 Controlling the printout and data output

The printout on standard output is performed if the variable zprint of type logical is
true. Therefore it is possible to control this printout by setting zprint false or true. For
example the following code, in sequence ‘zsteer’, triggers printing for every modzprint
time step and the two following time steps:

ZPRINT = mod(istep+1,modzprint).eq.0;

Zprint = zprint .or. mod(istep+l,modzprint).eq.1;

Zprint = zprint .or. mod(istep+1,modzprint).eq.2;

The data output to ‘.data’ files described in Section 2.4.3 [Running a simulation and
using the output], page 10 is performed if the logical variable zout is true. For example
the following code, in ‘zsteer’, triggers output to ‘.data’ files every modzout step.

Zout = mod(istep,modzout).eq.0;

Chapter 3: Advanced mini_ker programming 13

3 Advanced mini_ker programming

3.1 Overview of additional features setting

It is possible to enable some features by selecting which code should be part of the principal
program. Each of these optionnal features are associated with a select flag. For example
double precision is used instead of simple precision with the ‘double’ select flag, the model
is a subroutine with the select flag ‘monitor’, the Kalman filter code is set with ‘kalman’ and
the 1D gridded model capabilities are associated with ‘gridid’. To select a given feature
the cmz statement sel select_flag should be written down in the ‘selseq.kumac’ found
in the model directory. With make either the corresponding variable should be set to 1 or
it should be added to the SEL make variable, depending on the feature.

Other features don’t need different or additional code to be used. Most of the features
are enabled by setting specific logical variables to ‘.true.’. This is the case for zsensib
for sensitivities, zback for the adjoint model, zcommand if the command is in a file and
zlaw if it is a function and zkalman for the Kalman filter. These select and logical flags are
described in the corresponding sections.

In cmz an alternative of writing select flags to ‘selseq.kumac’ is to drive the compilation
with smod sel_flag. In that case the sel_flag is selected and the files and executable goes
to a directory named ‘sel_flag’.

The select flags are taken into account during cmz directives preprocessing. Therefore
you have the possibility to use these flags to conditionnaly include code. In most cases you
don’t need to include code conditionally yourself though, but if you want to, this is covered
in Section 3.8 [Programming with cmz directives|, page 22.

3.2 Calling the model code

When the model code is a subroutine, it can be called from another fortran program unit (or
another program), and the model will be run each time the subroutine is called. This tech-
nique could be used, for example to perform optimization (see Section 4.2 [Adjoint model
and optimisation with mini_ker|, page 27), or to run the model with different parameters.

3.2.1 Turning the model into a subroutine
With c¢mz, one has to do a
sel monitor

in the ‘selseq.kumac’ file and create the KEEP that call the model code. See Section 3.1
[Selecting features]|, page 13.

With make ‘monitor’ should be added to the SEL variable in the ‘Makefile’, for example:
SEL = monitor

A file that call the principal subroutine should also be written, using the prefered lan-
guage of the user. The additional object files should then be linked with the mini_ker
objects. To that aim they may be added to the miniker_user_objects variable.

Chapter 3: Advanced mini_ker programming 14

3.2.2 Calling the model subroutine

The model subroutine is called ‘principal’ and is called with the following arguments:

principal (Cost, ncall, integer_flag, file_suffix, info, idxerror) [Subroutine]
Where Cost is a real number, real or double precision, and is set by the principal
subroutine. It holds the value of the cost function if such function has been defined
(the use and setting of a cost function is covered later, see Section 4.2.3 [Cost function
coding], page 28). ncall is an integer which corresponds with the number of call to
principal done so far, it should be initialized to 0 and its value should not be
changed, as it is changed in the principal subroutine. integer_flag is an integer that
can be set by the user to be accessed in the principal subroutine. For example
its value could be used to set some flags in the ‘zinit’ sequence. file_suffix is a
character string, that is suffixed to the output files names instead of ‘.data’. If the
first character is the null character ‘char (0)’, the default suffix, ‘.data’ is appended.
info and idxerror are integer used for error reporting. idxerror value is 0 if there was
no error. It is negative for an alert, positive for a very serious error. The precise
value determines where the error occured. info is an integer holding more precise
information about the error. It is usually the information value from lapack. The
precise meaning of these error codes is in table 3.1.

Source of error or warning info idxerror
state matrix inversion in ker inversion 1
time advance system resolution in ker system 1
state matrix advance in phase space, (I — D) inversion inversion 3
transfer propagator, (I — D) inversion inversion 3
kalman analysis state matrix advance in phase space, (I — D) inversion inversion 21
kalman analysis variance covariance matrix non positive Choleski 22
kalman analysis error matrix inversion inversion 23
kalman error matrix advance system 24
transfers determination linearity problem for transfers -1
transerts determination Newton D_loop does not converge -2

table 3.1: Meaning of error codes returned by principal.

In general more information than the provided arguments has to be passed to the
principal subroutine, in that case a common block, to be written in the ‘dimetaphi’ se-
quence can be used.

3.3 Describing 1D gridded model

Specific macros have been built that allow to generically describe 1D gridded models. Be-
cause of the necessity of defining left and right limiting conditions, the models are parti-
tionned in three groups for cell and transfer components. In the following example, a chain
of masselottes linked by springs and dumps is bounded to a wall on the left, and open at
right. The TEF formulation of the problem is written in the phase space (position, velocity)

Chapter 3: Advanced mini_ker programming 15

for node k, with bounding conditions:

{ &77503 = ?7;2’81

ve spr spr dm dm
Oy, f= (pr" — CPkZ-)H + @i = ‘Pk+f) /iy,

{ o = —ke(m” =)
o = —dp(np = mpty)

" =0

e =0
‘P?\ﬁl =0
PN =0

where my, is the mass of node k, r;, and d;, the rigidity of springs and dumping coefficients.
There are N nodes in the grid, from 1 to N, and two nodes outside of the grid, a limiting
node 0, and a limiting node N 4 1. The limiting node corresponding with node 0 is called
the down node, while the limiting node corresponding with node N + 1 is called the up
node.

To enable 1D gridded models, one should set the select flag ‘grid1d’ in ‘selseq.kumac’,
like
sel gridld

3.3.1 Setting dimensions for 1D gridded model

In that case the number of nodes, the number of states and tranferts per node, and the
number of limiting transfers and states are required. These dimensions has to be entered
in the ‘DimEtaPhi’ sequence. The parameters for cells are

n_node Number of cell nodes in the 1D grid.

n_dwn Number of limiting cells with index -1, i.e. number of cells in the limiting down
node.

n_up Number of limiting cells with index +1, i.e. number of cells in the limiting up
node.

n_mult Number of cells in each node (multiplicity).

The parameters for transfers, are similarly m_node, m_dwn, m_up, m_mult. The layout of
their declaration should be respected as the precompiler matches the line.

In our example, there are 3 grids of cell and transfer variables (n_node=m_node=3). There
are 2 cells and 2 transfers in each node (n_mult=2 and m_mult=2). There is no limiting
condition for the states in the down node therefore n_up=0. There is no transfers for the
first limiting node, and therefore m_dwn=0. There are 2 states in the limiting node 0, the
down node, n_dwn=2, and 2 transfers in the limiting last node the node up, and m_up=2.

I i e e o A

! nodes parameters, and Limiting Conditions (Low and High)

I o B B B B B o S IS
parameter (n_node=3,n_dwn=2,n_up=0,n_mult=2);

Chapter 3: Advanced mini_ker programming 16

parameter (m_node=3,m_dwn=0,m_up=2,m_mult=2);
The dimension of the parameter arrays should also be declared in the ‘dimetaphi’ se-
quence. Here we have 3 parameters, for my, 7, and dy:

dimension rk(n_node),rd(n_node) ,rmassml(n_node);

3.3.2 1D gridded Model coding

The model code and parameters go in the ‘zinit’ sequence.

Parameters

A value for the mini_ker parameters and the model parameters should be given in ‘zinit’,
in our example we have
V0o To o Too o Jo o o o To o o Joo o To o o o To o
I Parameters
V0o o ToTo oo o To o To o o To o Jo o o Jo o Jo o o
data rk/n_nodex*1./;
data rd/n_nodex0.1/;
data rmassml/n_nodex1./;
dt=.01;
nstep=5 000;
modzprint = 1000;
time=0.;

Limiting conditions
The limiting states and transfer variables and the corresponding equations are declared

using the symbolic model description (see Section 2.3 [Symbolic model description], page 8).
There are 4 blocks, for node and up and down and for states and transfers:

set_dwn_eta
down node cells

set_up_eta
up node cells

set_dwn_phi
down node transfers

set_up_phi
up node transfers

The following scheme illustrates the example:
Voo el T ToToTo o o o T T To To o o o oo T e

! Maillage convention inode

Vi To o To s To o To o Toto To o fo o Fo o o o o oo oo Jo o Open ended
1 (2 Down Phi Eta (n_node)
! Eta) \| L= . L= . S . /
wall \[-\/\/\-| I-\/\/\-1 [| [-\/\/\- | dummy
pos \l-=#x*——| 1 |-—**x——| 2 | . . . -| n |-—%xx—— |Phis

!
!
! speed \| 1 I | 2 | _____ | n | __ | n+1 \(2 Up Phi)
!

Chapter 3: Advanced mini_ker programming 17

Two states are associated with the down node, they correspond with the position and
speed of the wall. As the wall don’t move these states are initialized to be 0, and the cells
are stationnary cells, therefore these values remain 0.

! Down cells (wall)
eta_pos_wall = 0; eta_speed_wall = O.;

set_dwn_eta
< var: eta_pos_wall, fun: deta_pos_wall = 0.;
var: eta_speed_wall, fun: deta_speed_wall= O.;
>3
There are 2 limiting transfers in the up node. They correspond with an open end and
are therefore set to 0.
! limiting Transfers : dummy ones
| e
set_Up_Phi
< var:ff_dummy_1, fun: f_dummy_1=0.;
var:ff_dummy_2, fun: f_dummy_2=0.;
> .

I

Starting points

The cell node state values are initialized. They are in an array indexed by the inode vari-
able. In the example the variable corresponding with position is eta_move and the variable
corresponding with speed is eta_speed. Their initial values are set with the following

mortran code

do inode=1,n_node <eta_move(inode)=0.01; eta_speed(inode)=0.0;>;

The transfers may be similarly initialized, still with inode as the node index.

Grid node equations

Each node is associated with an index inode. It allows to refer to the preceding node, with
inode-1 and the following node inode+1. The node states are declared in set_node_Eta
block and the transfers are in set_node_Phi blocks.

In the example, the cells are declared with

! node cells

set_node_Eta
< var: eta_move(inode), fun: deta_move(inode) = eta_speed(inode);
var: eta_speed(inode),
fun: deta_speed(inode) = rmassml(inode)
*(- ff_spring(inode+1) + ff_spring(inode)

Chapter 3: Advanced mini_ker programming 18

- ff_dump(inode+1) + ff_dump(inode)
)3

>

3

The transfers are (£f_spring corresponds with springs and £f_dump with dumps):
V9oT6%o o ToTo o o ToTo o o o To oo o o To o o
I Transfer definition
V06To o 1o oo To o o o To o o To o o To To o o To o

! node transfers

| convention de signe spring : comprime:= +
set_node_Phi
< var: ff_spring(.),
fun:
f_spring(inode)= -rk(inode)*(eta_move(inode) - eta_move(inode-1));
var: ff_dump(.),
fun:
f_dump (inode)

-rd(inode) * (eta_speed(inode) - eta_speed(inode-1));
>-

I

The limiting states and transfers are associated with the states or transfers with index
inode+1 or inode-1 appearing in node cell and transfer equations (inode-1 for down
limiting conditions and inode+1 for up limiting conditions) in their order of appearance. In
our example, in the eta_speed state node equation ff_spring(inode+1) appears before
ff_dump(inode+1) and is therefore associated with £f_dummy_1 while £ff_dump (inode+1)
is associated with the ff_dummy_2 limiting transfer, as ff_dummy_1 appears before ff_
dummy_2 in the limiting up transfers definitions.

All variable names and functions are free but has to be different. Any particular node-
attached variable k is referred to as: ‘(inode:k)’, where k has to be a Fortran expression
allowed in arguments. The symbol ‘inode’ is reserved. As usual other Fortran instructions
can be written within the Mortran block ‘< >’ of each set_ block.

3.4 Double precision

The default for real variables is the real Fortran type. It is possible to use double precision
instead. In that case all the occurences of ‘real ’ in mortran code is substituted with
‘double precision ’and the Lapack subroutine names are replaced by the double precision
names.

This feature is turned on by sel double in ‘selseq.kumac’ with cmz and double = 1 in
the ‘Makefile’ with make.

In order for the model to run in double or simple precision some care should be taken
to use the generic intrinsic functions, like sin and not dsin. No numerical constant should
be passed directly to subroutines or functions, but instead a variable with the right type
should be used to hold the constant value, taking advantage of the implicit casts to the
variable type.

Chapter 3: Advanced mini_ker programming 19

3.5 Parameters

It is possible to specify some Fortran variables as model parameters. Model parameters
may be used in sensitivities (see Section 4.1.4 [Sensitivity to a parameter|, page 26) and in
the adjoint model (see Section 4.2.4 [Sensitivity of cost function to parameters|, page 29).
Nothing special is done with parameters with kalman filtering.

To specify parameters, first the number of such parameters has to be declared in
‘dimetaphi’ with the parameter 1p. Then, if there are two parameters, they are first
declared with

parameter (1lp=1);

The parameters are fortran variables that should be initialized somewhere in zinit.
For a variable to be considered as a parameter, it should be passed as an argument to the
Free_parameters macro. For example if apar and cpar (from the predator example) are
to be considered as parameters, Free_parameters should be called with:

Free_parameter: apar, cpar;

Forward sensitivities are explained later (see Section 4.1.4 [Sensitivity to a parameter],
page 26), the syntax only is described here. When a parameter is used for forward sensi-
tivities, it should be marked by enclosing its name between ‘[fwd:” and ‘]’ in the Free_
parameter list. For example if apar is used for forward sensitivities, the Free_parameter
call becomes

Free_parameter: [fwd: apar], cpar;

When used with gridld models (see Section 3.3 [Describing 1D gridded model], page 14)
the inode number may appear in parenthesis:

Free_parameter: rd(1), rk(2);

3.6 Observations and data

Some support for observations and interactions with data is available. The observations
are functions of the model variables. They don’t have any action on the model result, but
they may (in theory) be observed and measured. The natural use of these observations is
to be compared with data that correspond with the values from real measurements. They
are used in the Kalman filter (see Section 4.3 [Kalman filter|, page 29).

The observation vector is noted w, the observation function is noted h:

W= h(777 SO)

3.6.1 Observations

The size of the observation vector is set in the ‘dimetaphi’ sequence by the nobsp parameter.
For example if there is one observation:

parameter (nobsp=1);

The observation functions are set by a f_set macro in the ‘zinit’ sequence with Obs_
tef(.).

Chapter 3: Advanced mini_ker programming 20

f_set Obs_tef(i) = fleta(.),f{.)) [Macro]
This macro defines the observation equation. f is a fortran expression which
may be function of cell state variables, ‘eta(1)’...‘eta(np)’ and transfers

FE£(1)7...Ff (mp) .

For example, in the predator-prey model if we only have access to the total population
of prey and predators, we would have:
f_set Obs_tef(1l) = eta(l) + eta(2);

The corresponding code is used with sel obs in ‘selseq.kumac’ with cmz and obs = 1
in ‘Makefile’ with make. And the feature is turned on and off at run time with the logical
flag zobs.

The observation vector is called etaobs(.), it is output in the file ‘obs.data’.

At each time step the derivative of the observation function with respect with transfers
and cells variables are recomputed. The elimination of transfers is also performed to get
the partial derivative of the observation function of the equivalent model, with states only,
with respect to the states. The matrix are:

obetad(.,.)
derivative of observation function with respect with transfers.

obphid(.,.)
derivative of observation function with respect with cell variables.

obspha(.,.)
derivative of observation function in state space with respect with cell variables.

3.6.2 Data

The convention for data is that whenever some data are available, the logical variable
zgetobs should be set to ‘.true.’. And the vobs(.) vector should be filled with the data
values. This vector has the same dimension than the observation vector and each coordinate
are meant to correspond with the corresponding coordinate of the observation vector.

This feature is turned on by setting the logical variable zdata to ‘.true.’;, and the
zgetobs flag is typically set in the ‘zsteer’ sequence (see Section 2.5.1 [Executing code at
the end of each time step], page 11). At each time data are available (zgetobs is true) the
observations are written to the file ‘data.data’. With the Kalman filter more informations
are outputted to the ‘data.data’ file, see Section 4.3.2.2 [Kalman filter results|, page 32.

3.7 Advanced use of mini_ker with make

3.7.1 Make variables

The ‘Makefile.miniker’ Makefile provided in the distribution should be included as it
defines a lot of important variables and rules.
The following make variables can be set by the user:
miniker_dir
that variable should hold the mini_ker sources directory. If you installed
mini_ker that variable should be set to ‘¢ (includedir)/mini_ker’. If you use

Chapter 3:

MTNDIRS

CMFDIRS

SEL

LDADD

Advanced mini_ker programming 21

the sources right from the sources directory it should be set to the sources
package directory.

This variable can hold a ‘:’ delimited list of directories that will be searched
for mortran include files.

This variable can hold a ‘:’ delimited list of directories that will be searched
for cmz directive include files.

This variable holds a ¢,” delimited list of select flags, for example monitor,
gridld, debug.

This variable can be used to add libraries flags and files. It is used in the default
linking command /rule.

miniker_user_objects

This variable should hold a space separated list of additional object files to be
linked with the model and helper object files.

CAR2TXTFLAGS

kalman

double

obs

cmz directives preprocessor flag.

This variable should be set to 1 if you want to use the kalman filter (see Sec-
tion 4.3 [Kalman filter], page 29).

This variable should be set to 1 if you want to have a double precision code
(see Section 3.4 [Double precision], page 18).

This variable should be set to 1 if you want to have a handling of observations
as described in Section 3.6.1 [Observations|, page 19.

The following variables are allready set and may be used (some are set by ./configure
see Section A.4.2 [Configuration], page 42):

miniker_principal_objects

DEPDIR

Fr7
FC
FFLAGS

LDFLAGS
LIBS

CAR2TXT
MORTRAN
MTNFLAGS
MTNDEPEND

The list of object files needed for the model build, together with some helper
object files often used but not strictly required for the linking.

The name of a hidden directory containing the dependencies computed for the
main mortran files.

Compiler and linker related variables set by ./configure.

This variable should hold the link flags and files required to build mini_ker, set
by ./configure.

Preprocessor and preprocessor flags, set by ./configure.

Chapter 3: Advanced mini_ker programming 22

3.7.2 Rules
The following rules are defined in the ‘Makefile.miniker’ file.

miniker-clean
remove the fortran files generated from the mortran files. Remove the object
files.

miniker-mtn-clean
remove the mortran files generated from the files with cmz directives.

Various rules to preprocess files with cmz directives and mortran files and to
compile fortran files.

If the user needs a mortran main file, he may take advantage of the rule used to com-
pute the dependencies of a mortran file. If the file is called, say, ‘mtnfile.mtn’ leading
to ‘mtnfile.f’, the following include should lead to the updating and inclusion of a file
describing the dependencies of ‘mtnfile.mtn’ in the ‘Makefile’:

include $(DEPDIR)/mtnfile.Pf

3.7.3 Linking rule

The rule used for the linking of the model file is not in the ‘Makefile.miniker’ file but
should be provided in the user ‘Makefile’ for more flexibility. The default rule uses the vari-
ables miniker_user_objects for additional object files and LDADD for additionnal linking
flags and files, those variables are there to be changed by the user.

The object files required by the mini_ker code are in the make variable miniker_
principal_objects, this variable is also used. The value of the variables FC for the Fortran
compiler, FFLAGS for the Fortran compiler flags and LDFLAGS for the linker flags should be
set to right values; LIBS should also be right and hold the link flags and link files required
to compile the mini_ker model. These variables are set by by ./configure during configu-
ration (see Section A.4.2 [Configuration], page 42) and used in the default rule:

$(model_file): $(miniker_user_objects) $(miniker_principal_objects)
$(FC) $(FFLAGS) $(LDFLAGS) $~ $(LDADD) $(LIBS) -o $@
In case this isn’t right it may be freely changed. You should certainly refer to the section

“Top” in GNU Make Manual manual to understand what that rule exactly means and make
your own.

3.8 Programming with cmz directives

In cmz the KEEP and DECK have their cmz directives preprocessed as part of the source
files extraction. And some directives are automatically set when creating the KEEP or
DECK. With make files with these directives has to be created within the files that are to
be preprocessed by the cmz directives preprocessor.

3.8.1 Files with cmz directives with make

A file that contains cmz directives should have a file suffix corresponding with the language
of the resulting file and with the normal file suffix of that language. More precisely ‘cm’
should be added before the normal file suffix and after the ‘.’. Therefore if the resulting
file language is associated with a suffix ‘. suf’, the file with cmz directives should have a

Chapter 3: Advanced mini_ker programming 23

‘.cmsuf’ suffix. The tradition is to have a different suffix for main files and include files. A
file containing cmz directives will be called a cmfile in the following.

Rules for preprocessing of the files are defined in the file ‘Makefile.miniker’ for the file
types described in table 3.2:

language file type cmfile suffix suffix language
fortran main/deck .cmf 5y ftn
fortran preprocessed — main/deck .cmF F f77
fortran preprocessed include/keep .cminc .inc f77
mortran main/deck .cmmtn .mtn mtn
mortran include/keep .cmmti .mti mtn

table 3.2: Association between file language, file type, file suffixes and language identifier
in cmz directives. A main file is called a deck in cmz and an include file is called a keep.

To add directories searched for cmfiles they should be added to the CMFDIRS makefile
variable, separate by ‘:’.

3.8.2 Cmaz directives used with mini_ker

The main feature of cmz directive is to use code conditionnaly for a given select flag. For
example when the double precision is selected (see Section 3.4 [Double precision], page 18)
the use of the conditionnal double flag may be required in case there is a different subroutine
name for different types. If, for example, the user use the subroutine smysub for simple
precision and dmysub for double precision the following code is an example of what could
appear in the user code:
+IF,double

call dmysub(eta);
+ELSE

call smysub(eta);
+ENDIF

For a complete reference on cmz directives see the appendix Appendix B [Cmz directives

reference], page 44.

Chapter 4: Dynamic analysis of systems in mini_ker 24

4 Dynamic analysis of systems in mini_ker

4.1 Automatic sensitivity computation

Another direct usage of the system Jacobian matrices concerns automatic sensitivity deter-
mination, as either:

e the sensitivity of all variables to perturbation in the initial condition of one state
variable;

e the same sensitivities to an initial pulse on a transfer;
e the same sensitivities for a change in a parameter;

e the sensitivity of the matrix of advance in state space to a change in a parameter.

One has to raise the flag ZSensib in Zinit, to enable sensitivities computation:
ZSensib = .true.;

It is noteworthy that these sensitivity analyses are not based on differences between two
runs with different initial states or parameter values, but on the formal derivatives of the
model, which is much more robust and rigorous®.

4.1.1 Initial state sensitivity

Fach state is associated with the element of the sens(.) array with the same index. For
example, eta(1) is associated with sens(1). If an element of the sens(.) array is set to
‘1.7 the sensitivity is computed, and if it is set to ‘0.’ it isn’t. For example in the following
code the sensitivity to eta(3) is computed, but not to eta(1) and eta(2):

sens(1) = 0.;
sens(2) = 0.;
sens(3) = 1.;

If the sensitivity to a state is computed, then mini_ker propagates the derivative of all
variables (cells and transfers), at every time step, with respect to the initial value of that
state. This allows to carry out a sensitivity analysis to the initial state.

These sensitivity goes to the result files ‘sens.data’ for cells and ‘sigma.data’ for trans-
fers. In those file the first column corresponds with time, and the other columns are deriva-
tive of the cell states (in ‘sens.data’) and transfers (in ‘sigma.data’) with respect with
the initial value of the perturbed state.

In our example, the second column of ‘sens.data’ will contain the derivative of 7 (t)
with respect to n3(t = 0). Drawing the second column of ‘sens.data’ against the first
one gives the time evolution of the sensitivity of eta(1) to a change in the initial value of
eta(3). In the same way, the jth column of ‘sigma.data’ will be the derivative of ¢;_;(t)
with respect to n3(t = 0).

An application of this can be to calculate the sensitivity of the model to the initial
conditions and to assess the predictability of the corresponding system.

L For a comprehensive description of automatic sensitivity analysis, see the document
http://1md. jussieu.fr/zoom/documents.dir/sensibilite.ps .

http://lmd.jussieu.fr/zoom/documents.dir/sensibilite.ps

Chapter 4: Dynamic analysis of systems in mini_ker 25

4.1.2 Sensitivity to a pulse or a step transfer perturbation

Fach transfer is associated with the element of the dfdpi(.) array with the same index.
For example, ££(1) is associated with dfdpi(1). If an element of the dfdpi(.) array is
set to ‘1.7 the sensitivity to a pulse (or a step) on the corresponding transfer is computed,
and if it is set to ‘0.7 it isn’t.

For example, if dfdpi(2) is set to ‘1.’ instead of ‘0.’, mini_ker calculates the model
normal trajectory and the sensitivity of all variables at every time step to an initial pulse
applied to ££(2). One can find in ‘sens.data’ the sensitivity of all the state variables
eta(.) to an initial pulse on £f(2); and in ‘sigma.data’ the sensitivity of all the transfer
variables £f(.) to that pulse.

The choice between an impulse initial perturbation or a step is made giving a value of
‘2" (pulse) or ‘3’ (step) to the variable ko_Pert_type.

4.1.3 Extended Sensitivity studies

The GTLS is characterized by the Jacobian matrices computed along with the system tra-
jectory. Many different integration of extra variables can also be computed. Four standard
sensitivity analyses are proposed.

A first example is the state transition matrix ®(¢,0) and its TEF complement ¥(¢,0)
for transfers. To obtain these matrices, one needs to set the Fortran parameter nxp to the
value of np in dimetaphi:

parameter (nxp=np,nyp=0,nzp=0) ;
and to give initial values to ®(0,0) in ZINIT:

I State transition matrix computation

! Tnitial Condition Perturbation case
ko_Pert_type = 1;

if nxp.eq.np

< Do ((i=1,np),j=1,nxp)< Phi_t(i,j) = 0.;>;
<i=1,np; Phi_t(i,i) = 1. >;

> .

)

One gets the results in two data files ‘phit.data’ and ‘psit.data’ where the matrices
are ordered column wise, as usual. It is possible to compute a reduced number of columns
nxp < np, in what case initial conditions corresponding to state variables to be subject to a
petrurbation have to be given.

An advantage of the on line determination of the state transition matrix — compared
to the use of sltcirc covered in Section 4.6 [Generalized linear tangent system analysis],
page 35 is:

1. it can be done in double precision easily;
2. the output can be reduced using modzout.

For instance a determinatioin of the Lyapunov exponents needs quite a long trajectory
that one does not want to output systematically.

Chapter 4: Dynamic analysis of systems in mini_ker 26

Three matrices are available: Phi_t (np,nxp), Psi_t (mp,nxp) and dPsi_t (np,nxp), as
well as aspha(np,np), The logical file number from 51 to 99 are free for recording one’s
results.

4.1.3.1 Four different types of sensitivity

Four type of sensitivity are proposed as standard, which are selected from the value of
ko_Pert_type. We have already seen the determination of the state transistion matrices
®, U with ko_Pert_type=1.

Now, the sensitivity to transfer perturbation can also be determined, corresponding to
either an initial pulse or a step function, with in that case an extra option regarding the
form of the response function.

e impulse perturbation : ko_Pert_type=2;
.
1-g;,(,0)”

e ko_Pert_type=4, same step but diagonal response of the type %;

e step function perturbation: ko_Pert_type=3; = diagonal of type

The mathematical explanation concerning these calculus are to be published in the
future.

The results are again in the arrays Phi_t, Psi_t, with a maximum number of nxp = mp
columns; In either of the preceding cases, one has to give the initial values for Phi_t in
‘zinit’, give a dimension to nxp, and select a type of perturbation with ko_Pert_type.v
Example:

| extension propagator calculus

|

! Transfers perturbation with initial impulsion
ko_Pert_type = 2;

if nxp.ge.O
< Do ((i=1,np),j=1,nxp)< Phi_t(i,j) = 0.;>;
> .

b

One must be aware that the option dfdpi also inherits of the type of perturbation
selected with ko_Pert_type.

4.1.4 Sensitivity to a parameter

A forward sensitivity to a parameter will be computed when specified as described in Sec-
tion 3.5 [Parameters], page 18. For example, suppose that the sensitivity to an initial
change in the apar parameter of the predator model is of interest. In that case the number
of parameters should be set to 1 in ‘dimetaphi’:

parameter (1lp=1);

The sensitivity should be turned on, but only for apar, as a forward parameter specified
on the Free_parameter list:
Zsensib = .true.;
do i=1,np <sens(i) = 0.;>
Free_parameter: [fwd: apar];

The result are still in ‘sens.data’ for cells and ‘sigma.data’ for transfers.

Chapter 4: Dynamic analysis of systems in mini_ker 27

4.1.5 Advance matrix sensitivity

It is possible to look at the sensitivity of the matrix of advance in states space (the matrix
aspha) with regard with a parameter. The parameter must be counted in the parameter
number and be in the parameter list flagged as the forward parameter, like in

Free_parameter: [fwd: apar];

This feature is associated with a selecting flag, ‘dPi_aspha’. One gets the result in the
matrix d_pi_aspha(.,.) of dimension (np,np).

This matrix may be used to compute other quantities, for example it may be used to
compute the sensitivity of the eigenvalues of the state-advance matrix with regard to the
parameter. These additional computations have to be programmed by the user in ‘zsteer’
with matrices declared and initialized in ‘zinit’. An example is given in the example
‘lorhcl’.

4.2 Adjoint model and optimisation with mini_ker

In the following a possible use of mini_ker for optimisation is discussed. More precisely
the use of adjoint and control laws in mini_ker are presented. Optimisation isn’t the only
application of these tools, but it is the most common one. In that case the adjoint may
be used to determine the gradient of a functional to perturbations in the control laws,
and an optimisation process can use this information to search for the optimum. Another
application of the adjoint is to compute the sensitivity of a cost function to parameters.

4.2.1 Overview of optimisation with mini_ker

In the proposed method, mini_ker is run twice, one time forward and then backward to
determine the trajectory and the adjoint model. After that the control laws are modified
by a program external to mini_ker. The same steps are repeated until convergence. More
pecisely,

forward ~ The command law h(t) is given (by an explicit law or with a file). The tra-
jectory is computed in a classical way, with the additionnal computation of
the functional to be optimised, .J, prescribed with specific f_set macros. The
states, transfers and control laws are stored.

backward The adjoint variable is computed from the last time T backward. The time
increment is reused as it could have changed during the forward simulation.
The system is solved by using the same technics as in the forward simulation,
but with a negative time step.

external phase
Now the command should be corrected. This step isn’t covered here, but, for
example, minuit the optimisation tool from the CERN could be used. In order
to ease such a use of mini_ker, the principal program has to be compiled as a
subroutine to be driven by an external program (see Section 3.2 [Calling the
model code], page 13).

The functionnal J to be optimised is defined as

T = 90, o)W + [l ol] dr

Chapter 4: Dynamic analysis of systems in mini_ker 28

Where 1) is the final cost function, [is the integrand cost function and h represents the
control laws.

The general use of the adjoint model of a system, is to determine the gradient of this
functional to be optimised, J to perturbations in the system trajectory, that is, along its
GTLS?.

4.2.2 Control laws

The control laws are associated with transfers or cells, meaning that a command associated
with a cell is the only command that may appear in the cell and the same is true for the
command associated with a transfer. It is still possible to add a command acting anywhere
by defining a transfer equal to that command.

The control laws associated with states are in the ux_com(.) array, control laws as-
sociated with transfers are in the uy_com(.) array. The control laws may be prescribed
even when there is no adjoint computed, nor any optimisation, and they are used during
simulation. To enable the use of command, the logical flag Zcommand should be .true..

The command can be given either as:
1. a table of numerical values in the files ‘uxcom.data’ and ‘uycom.data’.

2. a function of the problem variables. To turn that feature on the logical flag Z1aw should
be set to .true. in ‘zinit’. The sequence ‘zcmd_law’ should hold the code filling the
ux_com(.) and uy_com(.) arrays, as the code from that sequence is used whenever
the control laws are needed. In that case the files ‘uxcom.data’ and ‘uycom.data’ will
be filled by the command values generated by the function along the trajectory.

For example in the Lotka-Volterra model, the parameter apar could be a control variable.
In that case, apar would be defined as the variable ux_com(1), and either entered as a law
in the sequence ‘zcmd_law’ , either written in the file ‘uxcom.data’ step by step.

4.2.3 Cost function coding

First of all the flag zback should be set to .true. in order to allow adjoint model compu-
tation:

Zback=.true. ;

The two functions cout_Psi corresponding with the final cost and cout_1 corresponding
with the integrand cost are set up with the f_set macros.

f_set cout_Psi = f(eta(.),{.),ux_com(.),uy_com(.)) [Macro]
This macro defines the final cost function. f is a fortran expression which may be
function of cell state variables, ‘eta(1)’...‘eta(np)’, transfers ‘££(1)’...€f (mp)’,
state control laws ‘ux_com(1)’...‘ux_com(np)’, and transfer control laws
‘uy_com(1)’. .. ‘uy_com(mp)’ .

f_set cout_l = fleta(.),ff{.),ux_com(.),uy_com(.)) [Macro]
This macro defines the integrand cost function. £ is a fortran expression
which may be function of cell state variables, ‘eta(1)’...‘eta(np)’, transfers
“£f(1)’°...‘ff(mp)’, state control laws ‘ux_com(1)’...‘ux_com(np)’, and transfer
control laws ‘uy_com(1)’. . .‘uy_com(mp) .

2 General Tangent Linear System circulating along a trajectory.

Chapter 4: Dynamic analysis of systems in mini_ker 29

For example, the following code sets a cost function for the masselot model:
I Initialisation
F_set cout_Psi = eta_move(inode:1);
land f_set cout_l integrand in the functionnal
F_set cout_1l = 0.;

In that example the functional is reduced to the final value of the first state component.
Here, the adjoint vector will correspond to the final sensitivity (at ¢ = 0) of that component
(here the first masselot position) to a perturbation in all initial conditions®.

The following variables are set during the backward phase, and output in the associated
files:

var file explanation

w_adj(.) ‘wadj.data’ adjoint to eta(.)

v_adj(.) ‘vadj.data’ adjoint to ££(.)

graduej(.) ‘gradxj.data’ adjoint to ux_com(.)

gradufj(.) ‘gradyj.data’ adjoint to uy_com(.)

hamilton ‘hamilton.data’ time increment, hamiltonian, cost function increment

4.2.4 Sensitivity of cost function to parameters

The sensitivity of the cost function to all the parameters given as arguments of Free_
parameters is computed. For the predator model the sensitivity of a cost function consisting
in the integral of the predator population with respect with apar an cpar is obtained with
a number of parameters set to 2 in ‘dimetaphi’:

parameter (1p=2);
And the cost function and Free_parameters list in ‘zinit”

f_set cout_Psi = eta(2);
f_set cout_l = eta(2);
Free_parameters: apar,cpar;

apar and cpar also have to be initialized. The result is outputted in ‘gradpj.data’.

4.3 Kalman filter

The Kalman filter allows for data assimilation along the model run. In that case it is
assumed that there is a real model with stochastic perturbations on the states, and that
noisy observations are available. The situation implemented in mini_ker corresponds with
a continuous stochastic perturbation on the state and discrete noisy observations. In the
TEF this leads to:

Im(t) = g(n(t), p(t)) + W(t)u
p(t) = f(n(t), (1))
w(s) = h(n(s),e(s)) +v
The observations w are available at discrete time steps s. The stochastic perturbation on
state, u is characterized by a variance-covariance matrix ¢) and the noise on the observation,

3 For detailed explanation of the adjoint model, see the document in pdf or .ps.gz

http://www.lmd.jussieu.fr/penalty z@ ZOOM/documents.dir/Adjoint.pdf
http://www.lmd.jussieu.fr/penalty z@ ZOOM/documents.dir/Adjoint.pdf

Chapter 4: Dynamic analysis of systems in mini_ker 30

v has a variance-covariance matrix R. W relates states with stochastic perturbations. At
each time step the Kalman filter recomputes an estimation of the state and the variance-
covariance matrix of the state.

In the following we use the example of a linear model with perturbation on state and
observation of state. The model has 3 states and 3 corresponding transfers (equal to the
states), but the error on the state is of dimension 2. The 3 states are observed. The
corresponding equations read:

O = a1t + a2 + a13ps + Wi + Wiapo
0o = 2191 + Q297> + G303 + Worpn + Waapio
Oz = az1p1 + azope + azsnz + Wi + Waapio

Y1 ="

P2 = M2

Y3 =13
w1 =1+

We =Mz + Vo

w3 =1M3 + V3

4.3.1 Coding the Kalman filter

First of all the Kalman filter code should be used. The observations code is also required
(see Section 3.6.1 [Observations], page 19). If cmz is used the code should be selected with
the select flags kalman and obs in the ‘selseq.kumac’:

sel kalman
sel obs

With make the kalman variable should be set to 1, this will also trigger the selection of
the observations:

kalman = 1
The kalman code is actually used by setting the flag zkalman to .true., for example in
the ‘zinit’
zkalman = .True.;

This will set the zobs and zdata flags to .true. (see Section 3.6 [Observations and
datal, page 19).

With the Kalman filter the dimension of estimated states, of the error on the state and
of the observation, the W matrix, the observation function, the initial variance-covariance
matrices on the state and the variance-covariance matrices of errors have to be given.

4.3.1.1 Kalman filter vectors dimensions

These dimensions should be set in the ‘dimetaphi’ sequence. The size of the estimated
states is given by the parameter nkp. You can set this to np if all the states are estimated,
but in case there are some deterministic state variables, nkp may be less than np. In that
case the first nkp elements of eta(.) will be estimated using the Kalman filter.

Chapter 4: Dynamic analysis of systems in mini_ker 31

The error on state dimension is associated with the parameter nerrp and the size of the
observations vector is nobsp (see Section 3.6.1 [Observations|, page 19). In our example the
dimensions are set with:

parameter (nkp=np);
parameter (nobsp=3);
parameter (nerrp=2);

All the states are estimated, there are 3 observation functions and the error on the state
vector is of dimension 2.

4.3.1.2 Error and observation matrices

Initial variance-covariance matrix on the state

The variance-covariance on the state matrix is covfor (., .). The initial values have to be
given for this matrix, as in our example:

covfor(1,1) = 1000.; covfor(1,2) = 10.; covfor(1,3) = 10.;
covfor(2,1) = 10.; covfor(2,2) = 50 OO., covfor(2,3) = 5.;
covfor(3,1) = 10.; covfor(3,2) = 5.; covfor(3,3) = 2000.;

This matrix is updated by the filter at each time step because the states are pertubated
by some noise, and when assimilation takes place as new information reduce the error.

Observations and error on state matrix

The matrix that relates errors on states vector components to states, corresponding with
W is mereta(.,.). In our example it is set by:

mereta(1l,1) = 1.; mereta(l1,2) = 0.;
mereta(2,1) = 0.; mereta(2,2) = 1.;
mereta(3,1) 0.5; mereta(3,2) = 0.5;

The observation functions are set by a f_set macro with Obs_tef (.) as described in
Section 3.6.1 [Observations|, page 19. In our example the observation functions are set by:

f_set Obs_tef(1) = ff(1) ;
f_set Obs_tef(2) = eta(2);
f_set Obs_tef(3) = eta(3);

Error variance-covariance matrices
The variance-covariance matrix on observation noise is covobs(.,.) set, in our example,
by:
covobs(1,1) = 0.3; covobs(1,2) = 0.; covobs(1,3) = 0.;
covobs(2,1) = 0.; covobs(2,2) = 0.1; covobs(2,3) = 0.;
covobs(3,1) = 0.; covobs(3,2) = 0.; covobs(3,3) = 0.2;
The variance-covariance matrix on state noise is coveta(.,.) set, in our example, by:

coveta(l,1) = 0.2; coveta(1,2) = 0.001;
coveta(2,1) = 0.001; coveta(2,2) =

These matrices are not changed during the run of the model as part of the filtering
process. They may be changed by the user in ‘zsteer’.

Chapter 4: Dynamic analysis of systems in mini_ker 32

4.3.2 Kalman filter run and output

4.3.2.1 Feeding the observations to the model

The observations must be made available to the model during the run. These observations
are set in the vobs(.) array, and the assimilation (also called the analysis step of the filter)
takes place if the logical variable zgetobs is .true. (see Section 3.6.2 [Datal, page 20).

These steps are typically performed in the ‘zsteer’ sequence. In this sequence there
should be some code such that when there are data ready to be assimilated, zgetobs is set
to .true. and the data is stored in vobs(.).

4.3.2.2 Kalman filter results

The estimated states and transfers are still in the same ‘.data’ files, ‘res.data’ and
‘tr.data’ and there is the additional file with observations, called ‘obs.data’ (see Sec-
tion 3.6.1 [Observations], page 19). Each time zgetobs is .true. the data, and the op-
timally weighted innovations are output in the file associated with data, ‘data.data’ (see
Section 3.6.2 [Datal, page 20).

4.3.3 Executing code after the analysis

The analysis takes place before the time step advance when zgetobs is .true.. It may be
usefull to add some code after the analysis and before the time step advance. For example
the analysis may lead to absurd values for some states or parameters, it could be usefull to
correct them in that case. The sequence included after the analysis is called ‘kalsteer’.
At this point, in addition to the usual variables the following variables could be usefull:

etafor(.)
The state before the analysis.

kgain(.) The Kalman gain.

innobs(.)
The innovation vector (observations coherent with the states minus data values).

covana(.,.)
The variance-covariance error matrix after the analysis.

4.4 Feedback gain

The feedback dynamic gain associated with a feedback loop can be expressed as the inverse
Borel transform of the coefficient of the reduced scalar coupling matrix, g(7), associated
with a transfer. A Borel sweep provides this g(7). Therefore it is an interesting tool for the
characterization of the feedback loop®.

As explained in the ZOOM web page document http://www.lmd.jussieu.fr/
Z00M/documents.dir/ClimSIre3.ps.gz, this allows for the calculation of the dynamic
gain and factor of any feedback that goes through a unique transfer variable. An example
of the conclusions that can be drawn from such an analysis is provided in the same
document.

4 More generally, the Borel sweep allows the numerical study of the dependency in 7 of the Borel transform
of various coefficients in the system coupling matrix.

http://www.lmd.jussieu.fr/penalty z@ ZOOM/documents.dir/penalty z@ ClimSIre3.ps.gz
http://www.lmd.jussieu.fr/penalty z@ ZOOM/documents.dir/penalty z@ ClimSIre3.ps.gz

Chapter 4: Dynamic analysis of systems in mini_ker 33

For linear systems — whose GTLS are autonomous along the whole trajectory — the 7
function of the feedback gain is independent of the position on the system trajectory. But
in general it is dependant, and one can analyse the function g(7;t) defined on a segment ¢
of the trajectory.

The document introducing the TEF-ZOOM technique explains how a Crank-Nicolson
scheme for the time discretisation symbolically gives the solution of the Borel transform of
the system. One can identify the dt variable with the Borel 7 within a factor 2. Hence, to
numerically study the 7 dependency of the transform of various coefficients in the system
coupling matrix at one point in time, one can calculate the Borel transform of the TLS
solutions by making a time-step sweep.

The function g(7;t) is simply output for the feedback gain attached to a unique ff (k)
transfer variable. All the relevant informations should be entered in the ‘zinit’ sequence.

4.4.1 Specifying the Borel sweep
First of all the logical flag ZBorel should be raised
ZBorel=.true.;
The index of the studied transfer is given in the index_ff_gain variable
index_ff_gain=7;

At each time step a Borel sweep may be performed. The time steps of interest are
specified with three variables, one for the first step, one for the last step and one for the
number of steps between two Borel sweeps:

istep_B_deb
First time step for the Borel sweep.

istep_B_fin
Last time step for the Borel sweep.

istep_B_inc
Number of time steps between Borel sweeps.

In the following examples Borel sweeps are performed from the time step 1000 up to the
time step 1200, with a sweep at each time step:
istep_B_deb=1000;
istep_B_fin=1200;
istep_B_inc=1;
For each Borel sweep, the range of the T variable should be set. As this is a multiplicative
variable the initial value, a multiplicative factor and the number of values are to be given.

tau_B_ini
Initial value for 7.

tau_B_mult
Multiplicative factor for sweep in tau.

itau_max Number of 7 values.

For example, in the following, at each time step, the Borel transform will be computed
for 7 values starting at 0.2 and then multiplied a hundred times by \/v/2

Chapter 4: Dynamic analysis of systems in mini_ker 34

tau_B_ini=0.2;
tau_B_mult=sqrt(sqrt(2.));
itau_max=100;

When the initial value of 7 is set to a negative value (i.e. tau_B_ini=-0.2;), the Borel
sweep will first be applied with itau_max negative values for =0.2, tau_B_mult*(-0.2),...,
then for the zero value, and finally for the symetric positive values, resulting in 2*itau_
max+1 values for 7.

The whole example reads

I Feedback gain
I Borel

ZBorel=.true.;

if ZBorel

< 1istep_B_deb=1000;
istep_B_fin=1200;
istep_B_inc=1;

index_ff_gain=7;

tau_B_ini=0.2;

tau_B_mult=sqrt(sqrt(2.));

itau_max=100;

z_pr/Borel/:tau_B_mult,tau_B_ini*(tau_B_mult)**itau_max;
>3

Instead of using the index of the transfer in index_ff_gain it is possible to specify
the symbolic name of the transfer, whenever the symbolic model description is used (see
Section 2.3 [Symbolic model description], page 8). In that case the transfer is specified by the
zborel for macro. For example if the transfer selected for the feedback gain computation
is b_transfer, it can be selected with:

zborel for: b_transfer;

4.4.2 Borel sweep results

The file ‘tau_Borel.data’ gives the 7 values of the tau sweep, and the file ‘gains.data’
records the feedback gain function values of g(7), with one line for each sweep along the
trajectory. In the 1.01 version, a new feature is also provided giving the poles and residuals
of the Borel transform in the file ‘vpgains.data’. Consult the subroutine Boreleig for
(not definitive) output description.

One can easily obtain the surface contours of (¢, 7) using the Fortran program provided

as ‘gains.f’ and its compilation shell ‘gains.xqt’, that builds 2D histograms for PAW, in
which one uses the ‘borels.kumac’ provided kumac.

4.5 Stability analysis of fastest modes

The preceding analyses are done along with a simulation. One has also the possibility
of using in a more classical fashion the state advance matrix A, after the end of the
simulation. Code to perform the SVD (Singular Value Decomposition) of the state matrix

Chapter 4: Dynamic analysis of systems in mini_ker 35

A, and also of A, + Alt is provided with mini_ker. The singular elements of these two
matrices correspond to the most rapid modes of instability of the perturbed system.

The Singular value decomposition of a matrix is noted

UwVT

An executable file, ‘sltc.exe’ is generated and running this file will produce the corre-
sponding results.

4.5.1 Singular Value Decomposition with cmz

The ¢cmz macro smod SLTC prepares a main program (‘circul’ of +PATCH SLTC), provided
as a base for user’s own analysis, in the directory ‘sltc/’.

4.5.2 Singular Value Decomposition with make
To compile the singular value decomposition executable with make you can do
make sltc.exe

If you want to have a separate directory for the SVD, you should copy the sequence
‘dimetaphi.inc’ (or make a link to that file) to the directory. You should also copy the file
‘Makefile.sltc’ from the ‘template/’ directory in this directory, rename it ‘Makefile’ and
set the mini_ker directory path in the miniker_dir variable. For example, if the mini_ker
directory is in ‘/u/src/mini_ker’:

miniker_dir = /u/src/mini_ker

4.5.3 Singular Value Decomposition run and output

As it is, the ‘sltc.exe’ executable generated by the compilation determines the SVD. This
program requires ‘title.tex’ (see [Title file], page 7) to transmit a title for output and
graphics, and ‘aspha.data’ (see Section 2.4.3 [Running a simulation and using the output],
page 10) to access the state matrix. To get access to these files (in case they are not in
the current directory) it is possible to make a link to the corresponding files in the model
directory. Once it is done the program may be run:

./sltc.exe

The files ‘u.data’, ‘w.data’, and ‘v.data’ holds the singular elements for Ay, (U, w and
V), and ‘us.data’, ‘ws.data’, and ‘vs.data’ holds the singular elements of A, + Al,. The
corresponding macros ‘. kumac’ for PAW? are also generated.

4.6 Generalized linear tangent system analysis

The state matrix A, may also be used to compute the GTLS propagator (or state transition
matrix applied to perturbation), after the simulation. The algorithm is a finite product of
5th order development of ®(t 4 0t,t) = exp A, 0t. Numerous element of analysis are given,
in particular the determination of the Lyapunov exponents of the system.

An executable file, ‘sltcirc.exe’ is generated and running this file will produce the
corresponding results.

5 Explanation in the research paper about SLTC (Al1 2003)

Chapter 4: Dynamic analysis of systems in mini_ker 36

4.6.1 Generalized tangent linear system with cmz

The cmz macro smod SLTCIRC prepares a main program (‘circule’ of +PATCH SLTCIRC),
in the directory ‘sltcirc/’.

4.6.2 Generalized tangent linear system with make

To compile the GTLS analysis executable with make you can do
make sltcirc.exe

If you want to have a separate directory for the GTLS analysis, you should copy the
sequence ‘dimetaphi.inc’ (or make a link to that file) to the directory. You should also copy
the file ‘Makefile.sltcirc’ from the ‘template/’ directory in this directory and rename
it ‘Makefile’ and set the mini_ker directory path in the miniker_dir variable.

4.6.3 Generalized tangent linear system analysis run and output

The ‘sltcirc.exe’ executable generated by the compilation computes the elements of anal-
ysis of the system. This program requires ‘title.tex’ to transmit a title for output and
graphics (see [Title file], page 7), ‘aspha.data’ to access the state matrix and ‘dres.data’,
because time-step can be changed along the simulation (see Section 2.4.3 [Running a simu-
lation and using the output], page 10)%. To get access to these files (in case they are not in
the current directory) it is possible to make a link to the corresponding files in the model
directory. Once it is done the program may be run:

./sltcirc.exe

The following table gives the correspondence between variable name, result file and
ntuple number, with a short explanation:

var file tuple explanation

pC.,.) ‘phit.data’ 55 propagator from 0 to ¢, ®(t,0)
up(.,.) ‘uphit.data’ 50 U in the SVD of ®

wp(.) ‘wphit.data’ 51 eigen values of w in the SVD of ¢
vp(.,.) ‘vphit.data’ 52 V in the SVD of ¢

wr(.) ‘wr.data’ 53 real part of eigen values of V'
wi(.) ‘wi.data’ 54 imaginary part of eigen values of V'
lwp(.) ‘lwphit.data’ 67 Lyapunov exponents

6 ¢f our research texts about propagator analyses in SLTC, and “les Gains sur champs (All 2003-2004)”

Concepts index

Concepts index

$

‘$dimetaphi’l 9
Bzinit’ ... 9

A

adjoint. ... 27
‘aspha.data’............. ol 10
‘aspha.data’, GTLS 36
‘aspha.data’, SVD......... 35

B

Borel sweep 32
Borel sweep graphics......................... 34
Borel sweep results 34

cells ..o 1
cernlib. 41
command law 28
compilation 9
configuration of source 42
controlling therun........................... 11

D

‘data.data’ ... 20, 32
‘dimetaphi’ 4
dimetaphi, general 3
‘dimetaphi’, Kalman filter.................... 30
‘dimetaphi.mti’........... 9
downmnode............ il 15
‘dres.data’ ..ot 10, 11
‘dres.data’, GTLS 36

E

equations, grid L 17
error vector dimension 30

F

FDL, GNU Free Documentation License....... 48
feature setting 13
Feedback gain 32
final cost.......... 28

G

Generalized linear tangent system............. 35
‘gradpj.data’............. ... oo 29

37
graphics......... i 11
graphics with gnuplot 11
graphics with PAW........... 11
graphics, Borel sweep 34
GTLS .o 35
GTLS output.......cooviine e 36
GTLS run. ... 36
I
initial state sensitivity........................ 24
initial variance-covariance on states 31
installation with make 43
integrand cost il 28
K
Kalman filter..................... 29
Kalman filter output 32
Kalman filter results 32
L
lapack ... 41
limiting conditions................. 16
logical flags 13
Lyapunov exponents 35
M
‘Makefile.miniker’ 20
‘Makefile.sltcovviinennnnn . 35
‘Makefile.sltcirc’...............covvinn... 36
‘mini_ker.cmz’ 41
MOQ . oottt e e e e 9
model equations oL 6
model equations, symbolic..................... 8
model size......... ... 4
MOTETan ...t 1,3
mortran, with make.......................... 41
O
‘obs.data’ 20
observation function 19
observations............ il 31
observations, general 29
optimisation................. 27
output file......... ... 10
output, GTLS 36
output, Kalman filter 32
output, sensitivity L 24
output, SVD 35

Concepts index

P

‘phit.data’l 25
printing.......... L 12
Programming environments................... 41
propagator 35
‘psit.data’ ... 25

R

requirements, with make 41
‘res.data’ ... 10
results, Borel sweep.......................... 34
results, Kalman filter......................... 32
run, GTLS ... 36
run, SVD ..o 35
running model L 10

S

select flag 13
‘selseq.kumac’........................... 13, 41
‘semns.data’ ...l 24
sensitivities. 24
Sensitivity to a pulse or astep................ 25
sensitivity, output o 24
SEQUEIICE . o v vt et et e e e e e 3
SEQUETICES .« v vt vv et e e e e e 3
‘sigma.data’ ... 24
Singular Value Decomposition 34
‘Sltc.eXe . i 34, 35
‘sltcirc.exe’ 35, 36
SMOd ... 35, 36
starting point.......... oo il 7
state matrix........ i 34
SVD o 34
SVDoutput ... 35
SVDrun ..o 35

38
symbolic model equations 8
T
TEE . . 1,3
titlefile 7
‘title.tex’ ..o 7
‘title.tex’, GTLS 36
‘title.tex’, SVD..... 35
‘tr.data’ ... 10
transfers 1
Type of perturbation...................... ... 26
U
UP NOAE . oo vttt et 15
‘uxcom.data’ 28
‘uycom.data’ ... 28
V
variance-covariance error 31
variance-covariance matrices.................. 31
variance-covariance matrices, general 29
variance-covariance matrix on state 31
Z
‘zemd_daw’ ... 28
‘zemd_law.inc’ ... 28
CZAnAt . 5
zinit, general L 3
‘zinit’, Kalman filter 31
‘zinit.mti’ ... 9
ZOOM . .. 1
ZSteeT . .. 11
‘zsteer’, Kalman filter....................... 32
‘zsteer.inc’ 11

Variables, macros and functions index

39

Variables, macros and functions index

Variables, macros and functions index

C

couplage(.) ..ot 11
COUt _ L. 28
cout_Psi......... 28
covana (., .) oot 32
covetal(.,.) oo 31
covEor (.,) o 31
covobs (.,) i 31

D

d_pi_aspha(.,.) .o 27
AEta(.) e 10
deta_tef(.) ... 6
AEAPE (L) e 25
dPsi_t(np,nxp) ... 25
At 5,11
E

etal.) oo 6
eta(.), general 3
etafor(.) 32
etaobs (L) ... 20
F

foset. ..o 6, 7, 20, 28
FE () 6
ff(.), general 3
Free_parameter 19
I

index_ff _gain............. 33
innobs(.) ... 32
ISteP .ot 11
istep_B_deb..........l 33
istep B_fin....... il 33
istep_B_inc il 33
itau_max. 33
K

kgain(.) ..ot 32
M

M_AWI . et e e e e 15
M_mMUlt . .. 15
11T o e Yo L= 15
I_UD o o vttt e e e e e e e 15
MAXSEEP . .ottt 4
mereta(.,.) ..o 31
model_file_mamecuvuiiuenenann. 9
modzprint 5, 12
1)« S P 4

40
N
N AW . .ot e 15
n_mult. 15
N_NOAE . .ottt 15
0T 15
NODSD . ot et 19
0N 4
NSEED . oo 5
.45 o 25
obetad(.,.) oo 20
obphid(.,.) c.oiii 20
Obs_tef(.) ..ot 19
obspha(.,.) 20
P
Phi_t(Op,nxp) ..ot 25
Phi_tef(.) ... 6
principal i 14
PSi_t(mp,nxp) ...ovvvviiiii 25
SENS (L) ot 24
set_dwn_eta 16
set_dwn_phi L 16
Set_eta. ... 8
set_node_eta 17
set_node_Phi, 17
set_Phi.......... .. 8
set_up_etal 16
set_up_phi i 16
T
tau_ B_ini 33
tau_B_mult 33
TAme . o 5
VObS (L) oot 20, 32
Z
ZDACK . 28
ZBoTrel 33
zborel for....... 34
ZCOMMANA .+ o vt et et e e e 28
zgetobs ... 20, 32
ZRAIMAN . . oottt 30
ZL AW . e 28
ZPTANt 12

ZSensib. 24

Appendix A: Installation 41

Appendix A Installation

A.1 Programming environments

Mini_ker is not a traditionnal software in that it isn’t a library or an interpreter but rather
a set of source and macro file that combines with the user model code and enable to build
a binary program corresponding with the model. It requires a build environment with a
preprocessor, a compiler and facilities that automate these steps.

Two different environment are proposed. One use cmz (http://wwwcmz.web.cern.ch/
wwwcmz/index . html), while the other is based on make. Other libraries are needed, the
CERN Program Library (cernlib) and lapack.

A.2 Common requisites

Whatever method is used a fortran 77 compiler is required. The compilers that have been
used so far are g77, gfortran and the sun solaris compiler.

The CERN Program Library, available at http://wwwasd.web.cern.ch/
wwwasd/cernlib/, has to be installed. On windows, in case you want to use the compiler
from the GNU compiler collection with cygwin or MINGW /MSY'S you can use the binaries
provided at http://zyao.home.cern.ch/zyao/cernlib.html. On Mac OS X, the cernlib
provided by fink (package cernlib-devel) can be used.

You should also have LAPACK, available at http://www.netlib.org/lapack/.
LAPACK can also be installed as part of the CERN Library or as part of the
http://math-atlas.sourceforge.net/ implementation. On most linux distributions a lapack
package is available. On Mac OS X, the ATLAS implementation provided by fink or the
frameworks from Xcode can be used.

A.3 Mini_ker with cmz

First of all you have to get the cmz file ‘mini_ker.cmz’ and put it in a directory. In that
same directory you should create a directory for each of your models. In the model directory
you should copy the file ‘selseq.kumac’ available with mini_ker, and create your own cmz
file for your model, called for example ‘mymodel.cmz’. You should also have installed the
kumac macro files handling mortan compilation, the associated shell scripts and the mortran
preprocessor.

A.4 Mini_ker with make

A.4.1 Additional requirements for Mini_ker with make
The package has been tested with GNU make and solaris make.

Suitable preprocessors should also be installed. Two preprocessors are required,
one that preprocess the cmz directives, and a mortran preprocessor. A cmz direc-
tives processor written in perl, is distributed in the car2txt package available at
http://www.lmd. jussieu.fr/car2txt. A mortran package with a command able to pre-
process a mortran file given on the command line with a syntax similar with the cpp syntax
is also required. Such a mortran is available at http://www.1lnd. jussieu.fr/mortran.

http://wwwcmz.web.cern.ch/penalty z@ wwwcmz/index.html
http://wwwcmz.web.cern.ch/penalty z@ wwwcmz/index.html
http://wwwasd.web.cern.ch/penalty z@ wwwasd/cernlib/
http://wwwasd.web.cern.ch/penalty z@ wwwasd/cernlib/
http://zyao.home.cern.ch/penalty z@ zyao/cernlib.html
http://www.netlib.org/penalty z@ lapack/
ATLAS
http://www.lmd.jussieu.fr/car2txt
http://www.lmd.jussieu.fr/mortran

Appendix A: Installation 42

A.4.2 Configuration

The package is available at http://www.1lmd. jussieu.fr/Z00M/. It is available as a com-
presssed tar archive. On UNIX, with GNU tar it may be unpacked using

$ tar xzvf mini_ker-1.01.00.1.tar.gz

The detection of the compiler, the preprocessors (car2txt and mortran), and the libraries
are performed by the configure script. This script sets the apropriate variables in makefiles.
It can be run with:

$ cd mini_ker-1.01.00.1
$./configure

If the output of ./configure doesn’t show any error it means that all the components
are here. It is possible to give ./configure switches and also specify environment variables
(see also ./configure --help):

-—-with-static-cernlib
This command line switch forces a static linking with the cernlib (or a dynamic
linking if set to no).

--with-cernlib
This command line switch can be used to specify the cernlib location (if not
detected or you want to use a specific cernlib).

-—with-blas

--with-lapack
With this command switch, you can specify the location of the blas and lapack
libraries.

For example, on mac OS X this can be used to specify the blas and lapack from
the Apple frameworks:

./configure \
--with-blas=/System/Library/Frameworks/vecLib.framework/versions/A/vecLib \}j
--with-lapack=/System/Library/Frameworks/vecLib.framework/versions/A/vecLib]j

Fr7

FC

FFLAGS

LDFLAGS Classical compiler, compiler flags and linker flags.

MORTRAN This environment variable holds the mortran preprocessor command (default
is mortran).

MTNFLAGS This environment variable holds command line arguments for the mortran pre-
processor. It is empty in the default case.

MTN This environment variable may be used to specify the mortran executable name
and/or path, it should be used by the mortran commmand. (default is empty,
which leads to a mortran executable called mtn).

MTNDEPEND
This environment variable may be used to specify the mortran dependencies
checker executable. It should be used by the mortran commmand. (default is
empty, which leads to a mortran dependencies checker called mtndepend).

http://www.lmd.jussieu.fr/ZOOM/

Appendix A: Installation 43

After a proper configuration, if make is run then the example models should be build.
You have to perform the configuration only once.

A.4.3 Installation with make

Mini_ker can be installed by running
make install

It should copy the sources and the ‘Makefile.miniker’ file in a ‘mini_ker’ directory
in the $(includedir) directory, and copy the templates in ‘$ (datadir) /mini_ker’. The
default for $(includedir) is ‘/usr/local/include’ and the default for $(datadir) is
‘/usr/local/share’, these defaults may be changed by ./configure switches ‘~-prefix’,
‘-—includedir’ and ‘--datadir’. See ./configure --help and the ‘INSTALL’ file for more
informations. The helper script ‘start_miniker’ should also be installed.

The installation is not required to use comfortably mini_ker. Indeed the only thing that
changes with the sources and the ‘Makefile.miniker’ directory location is the miniker_dir
variable in a project Makefile.

Appendix B: Cmz directives reference 44

Appendix B Cmz directives reference

The cmz directives are described together with the other features of cmz in the cmz manual
at http://wwwcmz.web.cern.ch/wwwemz/, the important ones are nevertheless recalled
here, especially for those that use make and don’t need the whole features of cmz.

After the description of the generic features, we turn to the cmz directive of interest.
There are three kinds of cmz directives that are of use within mini_ker: one kind that
introduce files, the other for conditionnal compilation and the third for sequence inclusion.

B.1 Cmz directives general syntax

The cmz directives always begin with a ‘+’ in the first column, optionnaly followed by any
number of ‘_’” that may be used for indentation, then the directive label, case insensitive, fol-
lowed by the directive arguments separated by ‘,’. The arguments are also case insensitive.
Optional spaces may be around directive arguments. An optionnal ‘.’ ends the directive
arguments and begin a comment, everything that follows that ‘.’ is ignored.

B.2 Conditional expressions

A directive argument common to all the directives is the conditionnal expression. A condi-
tionnal expression may be true or false, it is a combination of select flags. the select flags
are combined with logical operators. A select flag itself is true if it was selected. A select
flag selflag is selected by using the sel selflag instruction in cmz. It is selected by passing
the -D selflag command line switch to the call of the cmz directives preprocessor when
using make.

A ‘-’ negates the expression that follows. Parenthesis ‘(" and ‘)’ are used for the grouping
of subexpressions. ‘|’ and *,’ are for the boolean or: an expression with a or is true if the
expression on the left or the expression on the right of the or is true. ‘&’ is for the boolean
and: an expression with an and is true if the expression on the left and the expression on
the right are true.

The grouping is left to right when there is no parenthesis, with or and ‘& having the
same precedence. Therefore

a&blc (a&b) | c
a|b&c (alb)&c
alb&c is not al (b&c)
agblc is not a&(blc)

B.3 File introduction directives

A file (or sequence) introduction directive appears at the beginning of the file. There
are two different directives, one is DECK for normal files, the other is KEEP for include files
(sequences). The first argument is the name of the file. The file name may not be larger than
32 characters and is converted to lower case in the general case. The optionnal following
arguments may be of 2 type (and may be mixed, separated by *,’):

conditional
A conditionnal is introduced by IF= followed by a conditionnal expression de-
scribed in Section B.2 [Conditional expressions|, page 44. The file is prepro-
cessed if the conditionnal expression is true.

http://wwwcmz.web.cern.ch/wwwcmz/

Appendix B: Cmz directives reference 45

language specification
A language specification is introduced by a T=. The most common languages are
‘mtn’ for the mortran, ‘ftn’ for fortran not preprocessed, ‘f77’ for preprocessed
fortran, ‘c’ for the c¢ language and ‘txt’ for text files. In general the language
of the file determines the name of files the preprocessed file is extracted to, the
comment style and the command for inclusions.

It is a common practice to have wrong language type in KEEP as the language may be
determined from the DECK that include them with cmz, or from their file name with make.
This is not recommended and considered a bad practice.

Such a directive will always appear in cmz, as it is built-in. It is recommended to have
one when using make too, even though it is not required in most cases. Indeed make uses
the file name directly and finds the language and file type by looking at the file extension.
make should then pass the language type with a -—lang lang command line switch when
calling the cmz directives preprocessor. With make, the convention is to have ‘cm’ added
before the normal file suffix and after the ‘.’. The table table 3.2 shows the matching
between suffixes, file type and file language.

For example, a file beginning with
+Deck, subroutine_foo, If=monitor&-simple, T=£77.

is a main preprocessed fortran file that will only be generated if ‘monitor’ is selected
and ‘simple’ is not selected. The file to be preprocessed by make should have the . cmF’
suffix, and be called ‘subroutine_foo.cmF’.

A file beginning with
+KEEP, inc_common,If=monitor|interface,T=mtn

is an mortran include file that should be processed only if ‘monitor’ or ‘interface’ is
selected. The file to be preprocessed by make should have the ‘cmmti’ suffix and be called
‘inc_common.cmmti’. The resulting file when make is used will be called ‘inc_common.mti’.

B.4 Conditional directives

Conditional directives may be used to conditionnaly skip blocks of code. There are 4
conditional directives: if, elseif, else and endif. +if begins a conditional directives
sequence, with argument a conditional expression. If the expression is true the block of
code following the +if is outputted in the resulting file, up to another conditional directive,
if it is false the code block is skipped. If the expression is false and the following conditional
directive is +elseif, the same procedure is followed with the argument of +elseif which
is also a conditionnal expression. More than one +elseif may follow a +if. If a +if
or +elseif expression is true the following code block is outputted and all the following
+elseif code blocks are skipped. If all the +if and +elseif expressions are false and the
following coditionnal directive is +else then the block following the +else is outputted. If
a previous expression was true the code block following the +else is skipped. The last code
block is closed by +endif.

Conditionnal directives may be nested, a +if begins a deeper conditionnal sequences
directives that is ended by the corresponding +endif.

The simplest example is:

Appendix B: Cmz directives reference 46

some code;
+IF,monitor

code outputted only if monitor is true;
+ENDIF

If ‘monitor’ is selected, the +if block is outputted, it leads to

some code;
code outputted only if monitor is true;

If ‘monitor’ isn’t selected the +if block is skipped, it leads to
some code;
An example with +else may be:

+IF,double

call dmysub(eta);
+ELSE

call smysub(eta);
+ENDIF

If ‘double’ is selected the code outputted is call dmysub(eta) ;, if ‘double’ isn’t selected
the code outputted is call dmysub(eta) ;.

Here is a self explanatory example of use of +elseif:

+IF,monitor
code used if monitor is selected;

+ELSEIF,kalman

code used if kalman is selected and monitor is not;
+ELSE

code used if kalman and monitor are not selected;
+ENDIF

And last an example of nested conditional directives:

+IF,monitor
code used if monitor is selected;
+_IF,kalman. deep if
code used if monitor and kalman are selected;
+_ELSE. deep else
code used if monitor is selected and kalman is not;
+_ENDIF. end the deep conditionnals sequence
+ELSE
code used if monitor is not selected;
+_IF,kalman
code used if monitor is not selected but kalman is;
+_ELSE
code used if monitor and kalman are not selected;
+_ENDIF
other code used if monitor is not selected;
+ENDIF

Appendix B: Cmz directives reference 47

B.5 File inclusion directive

[

The file (sequence) inclusion directive is seq. The argument of seq is an include files ¢,
separated list. The include files are Keep in cmz. The following optional arguments may be
mixed:

conditional
A conditionnal is introduced by IF= followed by a conditionnal expression de-
scribed in Section B.2 [Conditional expressions|, page 44. The directive is ig-
nored if the conditionnal expression is false.

T=noinclude
When this argument is present the text of the sequence will always be included
in the file where the +seq appears.

When there is no T=noinclude argument, the +seq directive may be replaced with an
inclusion command suitable for the language of the file being processed, if such command
has been specified.

For example if we have the following sequence
+KEEP, inc,lang=C
typedef struct incstr {char* msg};
And the following code in the file being processed:
+DECK ,mainf,lang=C
+SEQ,inc
int main (int argc, char* argv) { exit(0); }
the processing of ‘mainf’ should lead to the file ‘mainf.c’; containing an include com-
mand for ‘inc’:
#include "inc.h"
int main (int argc, char* argv) { exit(0); }
In case the +seq has the T=noinclude:
+DECK ,mainf,lang=C
+SEQ,inc,T=noinclude
int main (int argc, char* argv) { exit(0); }
The processing of ‘mainf’ should lead to the file ‘mainf.c’ containing the text of ‘inc’:

typedef struct incstr {char* msg};
int main (int argc, char* argv) { exit(0); }

B.6 The ‘self’ directive

The self directive is an obsolete directive that may be used for conditionnal skipping of
code. For a better approach see Section B.4 [Conditional directives|, page 45. The option-
nal argument of +SELF is If= followed by a conditionnal expression. If the conditionnal
expression is true the code following the directive is outputted, if it is false the code is
skipped up to any directive (including another +SELF) except +seq.

Appendix C: Copying This Manual 48

Appendix C Copying This Manual

C.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix C: Copying This Manual 49

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: Copying This Manual 50

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: Copying This Manual 51

O

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: Copying This Manual 52

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: Copying This Manual 53

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Copying This Manual 54

C.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Intended audience
	Reading guide

	An overview of the TEF formalism
	Cell and transfer equations
	Linearization and discretization in the TEF

	Mini_ker model programming
	General structure of the code
	Mini_ker programming illustrated
	All you need to know about mortran and cmz directives
	Entering model size
	Entering model equation and parameters

	Symbolic model description
	Setting and running a model
	Setup a model and compile with cmz
	Setup a model and compile with make
	Running a simulation and using the output
	Doing graphics

	Controlling the run
	Executing code at the end of each time step
	Controlling the printout and data output

	Advanced mini_ker programming
	Overview of additional features setting
	Calling the model code
	Turning the model into a subroutine
	Calling the model subroutine

	Describing 1D gridded model
	Setting dimensions for 1D gridded model
	1D gridded Model coding

	Double precision
	Parameters
	Observations and data
	Observations
	Data

	Advanced use of mini_ker with make
	Make variables
	Rules
	Linking rule

	Programming with cmz directives
	Files with cmz directives with make
	Cmz directives used with mini_ker

	Dynamic analysis of systems in mini_ker
	Automatic sensitivity computation
	Initial state sensitivity
	Sensitivity to a pulse or a step transfer perturbation
	Extended Sensitivity studies
	Four different types of sensitivity

	Sensitivity to a parameter
	Advance matrix sensitivity

	Adjoint model and optimisation with mini_ker
	Overview of optimisation with mini_ker
	Control laws
	Cost function coding
	Sensitivity of cost function to parameters

	Kalman filter
	Coding the Kalman filter
	Kalman filter vectors dimensions
	Error and observation matrices

	Kalman filter run and output
	Feeding the observations to the model
	Kalman filter results

	Executing code after the analysis

	Feedback gain
	Specifying the Borel sweep
	Borel sweep results

	Stability analysis of fastest modes
	Singular Value Decomposition with cmz
	Singular Value Decomposition with make
	Singular Value Decomposition run and output

	Generalized linear tangent system analysis
	Generalized tangent linear system with cmz
	Generalized tangent linear system with make
	Generalized tangent linear system analysis run and output

	Concepts index
	Variables, macros and functions index
	Installation
	Programming environments
	Common requisites
	Mini_ker with cmz
	Mini_ker with make
	Additional requirements for Mini_ker with make
	Configuration
	Installation with make

	Cmz directives reference
	Cmz directives general syntax
	Conditional expressions
	File introduction directives
	Conditional directives
	File inclusion directive
	The self directive

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

