
Miniker manual
for Miniker version 102, 8 September 2007

The TEF Collaboration

Copyright (C) 2004, 2005, 2006, 2007 Alain Lahellec
Copyright (C) 2004, 2005, 2006, 2007 Patrice Dumas
Copyright (C) 2004, Stéphane Hallegatte

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover text and with no Back-Cover Text. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

i

Table of Contents

Introduction . 1
Intended audience . 1
Reading guide . 1
Other Manuals and documentation . 1

1 An overview of the TEF formalism 2
1.1 Cell and Transfer equations . 2
1.2 Linearization and discretization in the TEF . 2

2 Miniker model programming 3
2.1 General structure of the code . 3
2.2 Miniker programming illustrated . 3

2.2.1 All you need to know about mortran and cmz directives . . . 3
2.2.2 Entering model equation and parameters 4

2.3 Setting and running a model . 8
2.3.1 Setup a model and compile with cmz . 8
2.3.2 Setup a model and compile with make . 9
2.3.3 Running a simulation and using the output 11
2.3.4 Doing graphics . 12

2.4 Controlling the run . 12
2.4.1 Executing code at the end of each time step 12
2.4.2 Controlling the printout and data output 14

3 Advanced Miniker programming 15
3.1 Overview of additional features setting . 15
3.2 Calling the model code . 15

3.2.1 Turning the model into a subroutine . 15
3.2.2 Calling the model subroutine . 16

3.3 Describing 1D gridded model . 17
3.3.1 Setting dimensions for 1D gridded model 17
3.3.2 1D gridded Model coding . 18

3.4 Double precision . 21
3.5 Partial Derivatives . 21

3.5.1 Derivating a power function . 22
3.6 Rule of programming non continuous models 22
3.7 Parameters . 23
3.8 Observations and data . 24

3.8.1 Observations . 24
3.9 Entering model size explicitely . 24

3.9.1 The explicit size sequence . 25
3.9.2 Entering the model equations, with explicit sizes 25

3.10 Programming with cmz directives . 26

ii

3.10.1 Cmz directives used with Miniker . 26
3.10.2 Using cmz directives in Miniker . 27

4 Dynamic analysis of systems in Miniker 28
4.1 Automatic sensitivity computation. 28

4.1.1 Sensitivity to a parameter . 29
4.1.2 Advance matrix sensitivity . 30

4.2 Adjoint model and optimisation with Miniker 30
4.2.1 Overview of optimisation with Miniker 30
4.2.2 Control laws. 31
4.2.3 Cost function coding and adjoint modeling. 32
4.2.4 Sensitivity of cost function to parameters 32

4.3 Kalman filter . 33
4.3.1 Coding the Kalman filter . 33

4.3.1.1 Kalman filter vectors dimensions 34
4.3.1.2 Error and observation matrices . 34

4.3.2 Kalman filter run and output . 35
4.3.2.1 Feeding the observations to the model 35
4.3.2.2 Kalman filter results . 35

4.3.3 Executing code after the analysis . 35
4.3.4 Data . 36

4.4 Feedback gain . 36
4.4.1 Specifying the Borel sweep . 36
4.4.2 Borel sweep results . 38

4.5 Stability analysis of fastest modes . 38
4.5.1 Singular Value Decomposition with cmz 38
4.5.2 Singular Value Decomposition with make 38
4.5.3 Singular Value Decomposition run and output 39

4.6 Generalized linear tangent system analysis 39
4.6.1 Generalized tangent linear system with cmz 39
4.6.2 Generalized tangent linear system with make 39
4.6.3 Generalized tangent linear system analysis run and output

. 39

5 Advanced use of Miniker with make 41
5.1 Make variables . 41
5.2 Rules . 42
5.3 Linking rule . 42

Concepts index . 43

Variables, macros and functions index 45

iii

Appendix A Installation . 47
A.1 Programming environments . 47
A.2 Common requisites . 47
A.3 Miniker with cmz . 47
A.4 Miniker with make . 47

A.4.1 Additional requirements for Miniker with make 47
A.4.2 Configuration . 48
A.4.3 Installation with make . 49

Appendix B Cmz directives reference 50
B.1 Cmz directives general syntax . 50
B.2 Conditional expressions . 50
B.3 File introduction directives . 50
B.4 Conditional directives . 51
B.5 File inclusion directive . 53
B.6 The ‘self’ directive . 53

Appendix C Copying This Manual 54
C.1 GNU Free Documentation License . 54

C.1.1 ADDENDUM: How to use this License for your documents
. 60

Introduction 1

Introduction

Miniker is a modeling tool, built especially in order to implement models written following
the TEF (Transfer Evolution Formalism) formalism, a mathematical framework for system
analysis and simulation. Miniker allows for timewise simulation, system analysis, adjoint
computation, Kalman filtering and more.

Miniker uses a fortran preprocessor, mortran, designed in the 1970’s, to ease model
writing using dedicated specific languages. For example partial derivatives are symbolicaly
determined by mortran macros in Miniker. For the selection of another compile-time fea-
tures, another set of preprocessor directives, the cmz directives, are used. In most cases
the user does not need to know anything about that preprocessing that occurs behind the
scene, he simply writes down the equations of his model and he is done.

A comprehensive description of the TEF formalism in available on
http://www.lmd.jussieu.fr/ZOOM/doc/tef-GB-partA5.pdf). The Miniker soft-
ware is a reduced version of ZOOM, that can only handle a hundreds of variables, but is
much easier to use.

Intended audience

The reader should have notions in system dynamics. Moreover a minimal knowledge of
programmation and fortran is required. What is required is a basic understanding of variable
types, affectation and fortran expressions.

Reading guide

The first chapter is a brief overview of the TEF. The following describes how to write,
compile and run a model in Miniker in its basic and comprehensive syntax. Reading up to
the section Controlling the run is required to be able to use Miniker. In this section it is
assumed that Miniker is properly setup. The installation instructions are in the appendix
at Appendix A [Installation], page 47.

The next chapter describes advanced features, first a general introduction to features
settings and then a description of other model description related features.

The next chapter describes system analysis tools available with Miniker. The sections
are independant and each describes how to use a specific feature. If you plan on using these
features, you should also read Section 3.1 [Overview of feature setting], page 15.

A final chapter describes advanced features in a development environment using make,
In the appendix the instructions for the installation are described (see Appendix A

[Installation], page 47).

Other Manuals and documentation

A programmers’Manual is available (in French), and can be asked for to any member of the
collabration. See additional documents in http://www.lmd.jussieu.fr/Zoom/doc or ask
for Research texts and articles to members.

http://www.lmd.jussieu.fr/ZOOM/doc/tef-GB-partA5.pdf
http://www.lmd.jussieu.frpenalty z@ /zoom
http://www.lmd.jussieu.fr/Zoom/doc

Chapter 1: An overview of the TEF formalism 2

1 An overview of the TEF formalism

The TEF (Transfer Evolution Formalism) is based on partitionning and recoupling of model
subsystems. It allows the study of the coupling between subsystems by the means of lin-
earization and time discretization.

1.1 Cell and Transfer equations

In the TEF, a model is mathematically represented by a set of equations corresponding to
two kinds objects:
1. Cells which are elementary models and correspond to evolution equations such as:

∂tη(t) = g(η(t), ϕ(t))

Vector η represent the state variables of cells and the vector ϕ represent the dependent
boundary conditions, i.e. the variables considered as boundary conditions by a cell,
but depending upon the complete model state. This dependent boundary conditions
are required to make the cells correspond to well-posed problems. These variables are
often called state variables, and prognostic variables in meteorology.

2. Transfers which are determined by constraint equations such as:

ϕ(t) = f(η(t), ϕ(t))

These equations are often called algebraic equations, and in meteorology diagnostic
equations.

1.2 Linearization and discretization in the TEF

The relations between sub-systems is excessively difficult to exhibit when having to cope
with non-linear system. In the TEF, the TLS (Tangent Linear System) is constructed along
the trajectory. One considers the system over a small portion along the trajectory, say
between t and t + δt. The variation δη of η and δϕ of ϕ is obtained through a Padé
approximation of the state-transition matrix. The final form of the algebraic system is
closed to the classical Crank-Nicolson scheme:(

A B
−C+ I −D

) (
δη
δϕ

)
=

(
Γ
Ω

)
The blocks appearing in the Jacobian matrix are constructed with partial derivative of

f and g, and with δt. From this system the elimination of δη leads to another formulation
giving the coupling between transfers, and allows for the δϕ computation. The δϕ value is
then substitued in δη to complete the time-step solving process.

Chapter 2: Miniker model programming 3

2 Miniker model programming

Miniker works by combining the model specification code given by the user and other source
files provided in the package. The code is assembled, preprocessed, compiled, linked and
the resulting program can be run to produce the model trajectory and dynamic analysis.

The code provided in the package contains a principal program, some usefull subrou-
tines and pieces of code called sequences combined with the different codes. Among these
sequences some hold the code describing the model and are to be written by the user
(sequences are similar to Fortran include files).

2.1 General structure of the code

The sequences used to enter model description hold the mathematical formulae for each cell
and transfer component, dedicated derived computations, and time-step steering. During
the code generation stage, cmz directives are preprocessed, then the user pseudo-Fortran
instructions are translated by mortran using macros designed to generate in particular all
Fortran instructions that compute the Jacobian matrices used in TEF modelling.

The sequence ‘zinit’ contains the mathematical formulation of the model (see Sec-
tion 2.2.2 [Model equation and parameters], page 4). Another sequence, ‘zsteer’, is merged
at the end of the time step advance of the simulation, where the user can monitor the time
step values and printing levels, and perform particular computations etc. (see Section 2.4.1
[Executing code at the end of each time step], page 12).

2.2 Miniker programming illustrated

The general TEF system writes:

∂tη(t) = g(η(t), ϕ(t))
ϕ(t) = f(η(t), ϕ(t))

To illustrate the model description in Miniker a simple predator-prey model of Lotka-
Volterra is used. This model can be written in the following TEF form:{

∂tηprey = aηprey − aϕmeet

∂tηpred = −cηpred + cϕmeet

ϕmeet = ηpreyηpred

with two cell equations, i.e. state evolution of the prey and predator groups, and one
transfer accounting for the meeting of individuals of different group.

2.2.1 All you need to know about mortran and cmz directives

The first stage of code generation consists in cmz directives preprocessing. Cmz directives
are used for conditional selection of features, and sequence inclusion. At that point you
don’t need to know anything about these directives. They are only usefull if you want to
take advantage of advanced features (see Section 3.10 [Programming with cmz directives],
page 26).

Chapter 2: Miniker model programming 4

The code in sequences is written in Mortran and the second stage of code generation
consists in mortran macro expansion. The mortran language is described in its own manual,
here we only explain the very basics which is all you need to know to use Miniker. Mortran
basic instructions are almost Fortran, the differences are the following:
• The code is free-form, and each statement should end with a semi-colon ;.
• Comments may be introduced by an exclamation mark ! at the beginning of a line, or

appear within double quotes " in a single line.
• It is possible to use blocs, for do or if statement for example, and they are enclosed

within brackets ‘<’ and ‘>’. To be in the safe side, a semi-colon ; should be added after
a closng bracket >.

The following fictious code is legal mortran:
real
param;

param = 3.; ff(1) = ff(3)**eta(1); "a comment"
! a line comment
do inode=1,n_node <eta_move(inode)=0.01; eta_speed(inode)=0.0;>;

Thanks to mortran the model code is very simply specified, as you’ll see next.

2.2.2 Entering model equation and parameters

The model equation and parameters and some Miniker parameters are entered in the ‘zinit’
sequence. The whole layout of the model is given before detailing the keywords.

!%%%%%%%%%%%%%%%%%%%%%%
! Parameters
!%%%%%%%%%%%%%%%%%%%%%%
real apar,bpar; "optional Fortran type declaration"

! required parameters
dt=.01; "initial time-step"
nstep=10 000; "number of iterations along the trajectory"
time=0.; "time initialisation "

! model parameters
apar = 1.5;
cpar = 0.7;

! misceallaneous parameters
modzprint = 1000; "printouts frequency"

print*,’***************************************’;
print*,’Lotka-Volterra model with parameters as:’;
z_pr: apar,bpar;
print*,’***************************************’;

!%%%%%%%%%%%%%%%%%%%%%%
! Transfer definition

Chapter 2: Miniker model programming 5

!%%%%%%%%%%%%%%%%%%%%%%
! rencontre (meeting)
set_Phi
< var: ff_interact, fun: f_interact = eta_prey*eta_pred;
>;

!%%%%%%%%%%%%%%%%%%%%%%
! Cell definition
!%%%%%%%%%%%%%%%%%%%%%%

set_eta
< var: eta_prey, fun: deta_prey = apar*eta_prey - apar*ff_interact;
var: eta_pred, fun: deta_pred = - cpar*eta_pred + cpar*ff_interact;

>;

!%%%%%%%%%%%%%%%%%%%%%%
! Initial states
!%%%%%%%%%%%%%%%%%%%%%%

eta_prey = 1.;
eta_pred = 1.;

;
OPEN(50,FILE=’title.tex’,STATUS=’UNKNOWN’); "title file"
write(50,5000) apar,cpar;

5000;format(’Lotka-Volterra par:’,2F4.1);

Variables and model parameters

The following variables are mandatory:

dt The time step.

time Model time initialisation.

nstep Number of iterations along the trajectory.

There are no other mandatory variables. Some optional variables are used to monitor
the printout and ouput of results of the code. As an example, the variable modzprint is
used to set the frequency of the printout of the model matrix and vectors during the run
(see Section 2.4.2 [Controlling the printout and data output], page 14).

User’s defined variable and Fortran or Mortran instructions can always be added for
intermediate calculus. To avoid conflict with the variables of the Miniker code, the rule is
that a users symbol must not have characters ‘o’ in the first two symbol characters.

In the predator-prey example there are two model parameters. The fortran variables are
called here apar for a and cpar for c. If a Fortan type definition is needed, it should be
set at the very beginning of ‘zinit’. The predator-prey code variable initializations finally
reads

Chapter 2: Miniker model programming 6

!%%%%%%%%%%%%%%%%%%%%%%
! Parameters
!%%%%%%%%%%%%%%%%%%%%%%
real apar,bpar; "optional Fortran type declaration"

dt=.01;
nstep=10 000;
time=0.;

! model parameters
apar = 1.5;
cpar = 0.7;

modzprint = 1000;

Model equations

The model equations for cells and model equations for transferts are entered in two mortran
blocks, one for the transferts, the other for the cell components. The model equations for
cells are entered into a set_eta block, and the transfer equations are entered into a set_phi
block.

In each block the couples variable-function are specified. For transfers the function
defines the transfer itself while for cells the function describes the cell evolution. The
variable is specified with var:, the function is defined with fun:.

In the case of the predator-prey model, the transfer variable associated with ϕmeet could
be called ff_interact and the transfer definition would be given by:

set_Phi
< var: ff_interact, fun: f_interact = eta_prey*eta_pred;
>;

The two cell equations of the predator-prey model, with name eta_prey for the prey
(ηprey) and eta_pred for the predator (ηpred) are:

set_eta
< var: eta_prey, fun: deta_prey = apar*eta_prey - apar*ff_interact;
var: eta_pred, fun: deta_pred = - cpar*eta_pred + cpar*ff_interact;

>;

The ‘;’ at the end of the mortran block is important.

Chapter 2: Miniker model programming 7

The whole model equations are setup with:

!%%%%%%%%%%%%%%%%%%%%%%
! Transfer definition
!%%%%%%%%%%%%%%%%%%%%%%
! rencontre (meeting)
set_Phi
< var: ff_interact, fun: f_interact = eta_prey*eta_pred;
>;

!%%%%%%%%%%%%%%%%%%%%%%
! Cell definition
!%%%%%%%%%%%%%%%%%%%%%%

set_eta
< var: eta_prey, fun: deta_prey = apar*eta_prey - apar*ff_interact;
var: eta_pred, fun: deta_pred = - cpar*eta_pred + cpar*ff_interact;

>;

Whenever the user is not concerned with giving a specific name to a function, it is possible
to specify the equation only with eqn:. Therefore the user may replace an instruction as:

var: ff_dump,
fun: f_dump = - rd*(eta_speed - eta_speed_limiting);

with:

eqn: ff_dump = - rd*(eta_speed - eta_speed_limiting);

In that case, the unnamed function will take the name of the defined variable preceded
by the ‘$’ sign: $ff_dump.

Starting points

The cells equations require state initial conditions. In some case, the transfers may also
need starting points although they are determined from the cell values.

In the predator-prey model the starting points for cells are:

! initial state
! -------------

eta_prey = 1.;
eta_pred = 1.;

When there is a non trivial implicit relationship between the transfers in the model, it
may be usefull or even necessary to set some transfers to non-zero values. This difficulty
is only relevant for the very first step of the simulation and will be used as a first guess of
ϕ. The uninitialized transfers having a default compiler-dependant (often zero) value, an
initialization to another value may help avoiding singular functions or matrix and ensure
convergence in the Newton algorithm used to solve the transfer implicit equation.

The cell and transfer arrays

Sometime it is easier to iterate over an array than to use the cell or transfer variable name.
This is possible because there is a correspondence between the variable names and the

Chapter 2: Miniker model programming 8

fortran array eta(.) for the cell variables and the fortran array ff(.) for the transfer
variables1.

The index of the variable is determined by the order of appearance in the variable defi-
nition blocks. It is reminded in the output, as explained later (see Section 2.3.3 [Simulation
and output], page 11).

The number of cells is in the integer np variable, and the number of transfer is in the
integer mp variable.

title file

For some graphics generation, a file with name ‘title.tex’ is required which sets the title.
The following instructions take care of that:

OPEN(50,FILE=’title.tex’,STATUS=’UNKNOWN’);
write(50,5000) apar,cpar;

5000;format(’Lotka-Volterra par:’,2F4.1);

close(50);

In that case the parameter values are written down, to differenciate between different
runs. This step is in general not needed.

2.3 Setting and running a model

In this section it is assumed that a programming environment has been properly setup.
This environment may use either cmz or make to drive the preprocessing and compilation.
You can skip the part related with the environment you don’t intend to use.

For instructions regarding the installation, see Appendix A [Installation], page 47.

2.3.1 Setup a model and compile with cmz

The user defined sequences are ‘KEEP’ in the cmz world. The most common organization
is to have a cmz file in a subdirectory of the directory containing the ‘mini_ker.cmz’ cmz
file. In this cmz file there should be a ‘PATCH’ called ‘zinproc’ with the KEEPs within the
patch. The KEEP must be called ‘$zinit’.

From within cmz in the directory of your model the source extraction, compilation
and linking will be triggered by a mod command. This macro uses the ‘selseq.kumac’
information to find the ‘mini_ker.cmz’ cmz file. mod shall create a directory with the
same name than the cmz file, ‘mymodel/’ in our example. In this directory there is another
directory ‘cfs/’ containing the sources extracted from the cmz file.

The file ‘mymodel_o.tmp’ contains all the mortran code generated by cmz with the
sequences substituted, including the ‘$zinit’. The fortran produced by the preprocessing
and splitting of this file is in files with the traditional ‘.f’ suffix. The principal program
is in ‘principal.f’. An efficient way of getting familiar with mini ker methods is looking
at the ‘mymodel_o.tmp’ where all sequences and main Mortran instructions are gathered.

1 In fact the variables names are transformed into fortran array elements by mortran generated macros,
so the symbolic names defined in the mortran blocks never appears in the generated fortran code, they
are replaced by the fortran arrays.

Chapter 2: Miniker model programming 9

Symbolic derivation is noted as F_D(expression)(/variable), and the resulting Fortran
code is in ‘principal.f’.

mod also triggers compilation and linking. The object files are in the same ‘cfs/’ directory
and the executable is in the ‘mymodel/’ directory, with name ‘mymodel.exe’.

2.3.2 Setup a model and compile with make

With make, the sequences are files ending with ‘.mti’ (for mortran include files), called, for
example, ‘zinit.mti’. They are included by mortran in other source files. You also need
a ‘Makefile’ to drive the compilation of the model.

If you don’t need additional code or libraries to be linked with your model you have two
alternatives.
1. The simplest alternative is to run the start_miniker script with the model file name

as argument. It should copy a ‘zinit.mti’ file ready to be edited and a Makefile ready
to compile the model. For the predator prey model, for example, you could run

$ start_miniker predator

2. Otherwise you can copy the Makefile from ‘template/Makefile’ in the directory con-
taining the sequences. You should then change the compiled model file name, by
changing the value of the model_file_name variable to the name of your choice in the
Makefile. It is set to ‘mymodel’ in the template. For the predator-prey model, it could
be set like

model_file_name = predator

If you want the executable model file to be built in another directory, you could set
model_file_name = some_dir/predator

The other items set in the default Makefile should be right.

The preprocessing and the compilation are launched with
make all

The mortran files are generated by the cmz directive preprocessor from files found in the
package source directories. The mortran files end with ‘.mtn’ for the main files and ‘.mti’
for include files. They are output in the current directory. The mortran preprocessor then
preprocess these mortran files and includes the sequences. The resulting fortran code is
also in the current directory, in files with a ‘.f’ suffix. Some fortran files ending with ‘.F’
may also be created by the cmz directive preprocessor. The object files resulting from the
compilation of all the fortran files (generated from mortran or directly from fortran files)
are there too.

In case you want to override the default sequences or a subroutine file you just have to
create it in your working directory along with the ‘zinit.mti’. For example you could want
to create or modify a ‘zsteer.mti’ file (see Section 2.4.1 [Executing code at the end of each
time step], page 12), a ‘zcmd_law.mti’ file (see Section 4.2.2 [Control laws], page 31), a
‘monitor.f’ file (see Section 3.2.1 [Turning the model into a subroutine], page 15) to take
advantage of features presented later in this manual.

More in-depth discussion of using make to run Miniker is covered in Chapter 5 [Advanced
use of Miniker with make], page 41. For example it is also possible to create files that are to
be preprocessed by the cmz directive preprocessor and separate source files and generated

Chapter 2: Miniker model programming 10

files. This advanced use is more precisely covered in Section 3.10 [Programming with cmz
directives], page 26.

Chapter 2: Miniker model programming 11

2.3.3 Running a simulation and using the output

Once compiled the model is ready to run, it only has to be executed. On standard output
informations about the states, transfers, tangent linear system and other jacobian matrices
are printed. For example the predator-prey model could be executed with:

./predator > result.lis

The correspondance between the symbolic variables and the basic vectors and functions
are printed at run time:

---------------- Informing on Phi definition -----------------
Var-name, Function-name, index in ff vector

ff_interact f_interact 1
--

--------------- Informing on Eta definition ------------------
Var-name, Function-name, index in eta vector

eta_prey deta_prey 1
eta_pred deta_pred 2

A summary of the model equations are in ‘Model.hlp’ file. For the same example:

======================= set_Phi

1 ff_interact f_interact eta_pray*eta_pred
======================= set_Eta

1 eta_pray deta_pray apar*eta_pray-apar*ff_interact
2 eta_pred deta_pred -cpar*eta_pred+cpar*ff_interact

when other general functions are specified with f_set, it can appear also in the same
help file when replaced by fun_set.

As far as possible, all data printed in the listing are associated with a name related to a
variable. Here is an extract:

Gamma :-8.19100E-02-1.42151E-01 3.87150E-02
eta_courant eta_T_czcx eta_T_sz

--
Omega : 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

courant_L T_czcx Psi_Tczc Psi_Tsz
--

for the two known vectors of the system, and:

>ker : Matrice de couplage 4 4 4 4
courant_L Raw(1,j=1,4): 1.000 -9.9010E-03 0.000 0.000
T_czcx Raw(2,j=1,4): -2.7972E-02 1.000 0.000 9.9900E-04
Psi_Tczcx Raw(3,j=1,4): 0.1605 9.7359E-02 1.000 -5.7321E-03
Psi_Tsz Raw(4,j=1,4): 0.000 -0.1376 5.7225E-03 1.000

Var-Name courant_L T_czcx Psi_Tczc Psi_Tsz
--

Chapter 2: Miniker model programming 12

where the couplage (coupling matrix) is given that corresponds to the matrix coupling
the four transfer components after δη has been eliminated from system. It is computed in
the subprogram ‘oker’ (for kernel) which solves the system.

Basic results are output in a set of ‘.data’ files. The first line (or two lines) describes the
column with a ‘#’ character used to mark the lines as comments (for gnuplot for example).
In the ‘.data’ files, the data are simply separated with spaces. Each data file has the time
variable values as first column.1. Following columns give the values of eta(.) in ‘res.data’,
dEta(.) in ‘dres.data’ – the step by step variation of eta(.) – and ff(.) in ‘tr.data’.

Along the simulation the TEF Jacobian matrices are computed. A transfer variables
elimination process also leads to the definition of the classical state advance matrix of the
system (the corresponding array is aspha(.,.) in the code). This matrix is output in
the file ‘aspha.data’ that is used to post-run dynamics analyses. The matrix columns are
written column wise on each record. See Section 4.5 [Stability analysis of fastest modes],
page 38. See Section 4.6 [Generalized tangent linear system analysis], page 39. It is not
used in the solving process.

Other ‘.data’ files will be described later.

2.3.4 Doing graphics

Since the data are simply separated with spaces, and comment lines begin with ‘#’, the files
can be vizualised with many programs. With gnuplot, for example, to plot eta(n), the
gnuplot statement could be:

plot "res.data" using 1:(n+1)

The similar one for ff(n):
plot "tr.data" using 1:(n+1)

For people using PAW, the CERN graphical computer code, Miniker prepares kumacs
that allow to read process the ‘.data’ files in the form of n-tuples (see the PAW manual for
more information). In that cas, the flag sel paw has to be gievn in the ‘selsequ.kumac’.
The generated n-tuples are ready to use only for vector dimension of at most 10 (including
the variable time). These kumacs are overwritten each time the model is run. Usaually,
gnuplot has to be preferred, but when using surfaces and histograms, PAW is better. The
‘gains.f’ (and ‘go.xqt’ is provided as an example in the Miniker files.

2.4 Controlling the run

It is possible to add code that will be executed at the end of each time step. It is also
possible to specify which time step leads to a printout on standard output. For maximal
control, the code running te model may be turned into a subroutine to be called from
another fortran (or C) program, this possibility is covered in Section 3.2 [Calling the model
code], page 15.

2.4.1 Executing code at the end of each time step

The code in the sequence ‘zsteer’ is executed at the end of each time step. It is possible
to change the time step length (variable dt) verify that the non linearity are not too big,

1 ‘dres.data’ has another time related variable as second column: dt, the time step that can vary in the
course of a simulation.

Chapter 2: Miniker model programming 13

or perform discontinuous modifications of the states. One available variable res might
be usefull for time step monitoring. At the end of the time step, as soon as ϕ has been
computed, a numerical test is applied on a pseudo relative quadratic residual between ϕ =
f(η(t−dt)+dϕ (ffl), where dϕ is given by the system resolution in ker,and ϕ = f(η), ϕ),
Fortran variable (ff):
! ==
! test linearite ffl - ff
! ==
if (istep.gt.1)
< res=0.; <io=1,m; res = res +(ffl(io)-ff(io))**2/max(one,ff(io)*ff(io)); >;
if (res .gt. TOL_FFL)
< print*,’*** pb linearite : res > TOL_FFL a istep’,istep,res,’ > ’,TOL_FFL;
do io=1,m < z_pr: io,ff(io),ff(io)-ffl(io); >;

>;
>;

This test hence applies only for non linearities in tranfer models. Nevertheless, res might
be usefull to monitor the time step dt in ZSTEER and eventually go backward one step (goto
:ReDoStep:). This can more appropriatly be coded in the (empty in default case) sequence
zstep, inserted just before time-advancing states and time variables in ‘principal’.

It is also possible to fix the value of the criterium TOL_FFL in ‘zinit’ different from its
default value of 10−3 – independent of the Fortran precision.

Many other variables are available, including

istep The step number;

couplage(.)
The TEF coupling matrix between transfers;

H The Jacobian matrix corresponding with:

∂ηg(η(t), ϕ(t));

Bb The Jacobian matrix corresponding with:

∂ϕg(η(t), ϕ(t));

Bt The Jacobian matrix corresponding with:

∂ηf(η(t), ϕ(t));

D The Jacobian matrix corresponding with:

∂ϕf(η(t), ϕ(t));

aspha The state advance matrix;

dneta
dphi the variable increments;

One should be aware of that the linearity test concerns the preceding step. We have yet
no example of managing the time-step.

Chapter 2: Miniker model programming 14

2.4.2 Controlling the printout and data output

The printout on standard output is performed if the variable zprint of type logical is
true. Therefore it is possible to control this printout by setting zprint false or true. For
example the following code, in sequence ‘zsteer’, triggers printing for every modzprint
time step and the two following time steps:

ZPRINT = mod(istep+1,modzprint).eq.0;
Zprint = zprint .or. mod(istep+1,modzprint).eq.1;
Zprint = zprint .or. mod(istep+1,modzprint).eq.2;

The data output to ‘.data’ files described in Section 2.3.3 [Running a simulation and
using the output], page 11 is performed if the logical variable zout is true. For example
the following code, in ‘zsteer’, triggers output to ‘.data’ files every modzout step.

Zout = mod(istep,modzout).eq.0;

Chapter 3: Advanced Miniker programming 15

3 Advanced Miniker programming

3.1 Overview of additional features setting

It is possible to enable some features by selecting which code should be part of the principal
program. Each of these optionnal features are associated with a select flag. For example
double precision is used instead of simple precision with the ‘double’ select flag, the model
is a subroutine with the select flag ‘monitor’, the Kalman filter code is set with ‘kalman’ and
the 1D gridded model capabilities are associated with ‘grid1d’. To select a given feature
the cmz statement sel select_flag should be written down in the ‘selseq.kumac’ found
in the model directory. With make either the corresponding variable should be set to 1 or
it should be added to the SEL make variable, depending on the feature.

Other features don’t need different or additional code to be used. Most of the features
are enabled by setting specific logical variables to ‘.true.’. This is the case for zback
for the adjoint model, zcommand if the command is in a file and zlaw if it is a function
and zkalman for the Kalman filter. These select and logical flags are described in the
corresponding sections.

In cmz an alternative of writing select flags to ‘selseq.kumac’ is to drive the compilation
with smod sel_flag . In that case the sel flag is selected and the files and executable goes
to a directory named ‘sel_flag’.

The select flags are taken into account during cmz directives preprocessing. Therefore
you have the possibility to use these flags to conditionnaly include pieces of code. In most
cases you don’t need to include code conditionally yourself though, but if you want to, this
is covered in Section 3.10 [Programming with cmz directives], page 26.

3.2 Calling the model code

When the model code is a subroutine, it can be called from another fortran program unit (or
another program), and the model will be run each time the subroutine is called. This tech-
nique could be used, for example to perform optimization (see Section 4.2 [Adjoint model
and optimisation with Miniker], page 30), or to run the model with different parameters.

3.2.1 Turning the model into a subroutine

With cmz, one has to do a

sel monitor

in the ‘selseq.kumac’ file and create the KEEP that call the model code. See Section 3.1
[Selecting features], page 15.

With make ‘monitor’ should be added to the SEL variable in the ‘Makefile’, for example:

SEL = monitor

A file that call the principal subroutine should also be written, using the prefered lan-
guage of the user. The additional object files should then be linked with the Miniker objects.
To that aim they may be added to the miniker_user_objects variable.

Chapter 3: Advanced Miniker programming 16

3.2.2 Calling the model subroutine

The model subroutine is called ‘principal’ and is called with the following arguments:

[Subroutine]principal (Cost, ncall, integer flag, file suffix, info, idxerror)
Where Cost is a real number, real or double precision, and is set by the principal
subroutine. It holds the value of the cost function if such function has been defined
(the use and setting of a cost function is covered later, see Section 4.2.3 [Cost function
coding and adjoint modeling], page 32). ncall is an integer which corresponds with
the number of call to principal done so far, it should be initialized to 0 and its value
should not be changed, as it is changed in the principal subroutine. integer flag is
an integer that can be set by the user to be accessed in the principal subroutine. For
example its value could be used to set some flags in the ‘zinit’ sequence. file suffix is
a character string, that is suffixed to the output files names instead of ‘.data’. If the
first character is the null character ‘char(0)’, the default suffix, ‘.data’ is appended.
info and idxerror are integer used for error reporting. idxerror value is 0 if there was
no error. It is negative for an alert, positive for a very serious error. The precise
value determines where the error occured. info is an integer holding more precise
information about the error. It is usually the information value from lapack. The
precise meaning of these error codes is in table 3.1.

Source of error or warning info idxerror
state matrix inversion in ker inversion 1
time advance system resolution in ker system 2
transfer propagator, (I −D) inversion inversion 3
kalman analysis state matrix advance in phase space, (I −D) inversion inversion 21
kalman analysis variance covariance matrix non positive Choleski 22
kalman analysis error matrix inversion inversion 23
kalman error matrix advance system 24
transfers determination linearity problem for transfers -1
transerts determination Newton D loop does not converge -2

table 3.1: Meaning of error codes returned by principal.

In general more information than the provided arguments has to be passed to the
principal subroutine, in that case a common block, to be written in the ‘zinit’ sequence
can be used.

Chapter 3: Advanced Miniker programming 17

3.3 Describing 1D gridded model

Specific macros have been built that allow generic description of 1D gridded models. Because
of the necessity of defining left and right limiting conditions, the models are partitionned
in three groups for cell and transfer components. In the following example, a chain of
masselottes linked by springs and dumps is bounded to a wall on the left, and open at right.
The TEF formulation of the problem is written in the phase space (position-shift, velocity)
for node k, with bounding conditions:{

∂tη
pos
k = ηvel

k

∂tη
vel
k = (ϕspr

k − ϕspr
k+1 + ϕdmp

k − ϕdmp
k+1) /mk

{
ϕspr

k = −kk(η
pos
k − ηpos

k−1)

ϕspr
k = −dk(ηvel

k − ηvel
k−1)

ηpos
0 = 0

ηvel
0 = 0

ϕspr
N+1 = 0

ϕdmp
N+1 = 0

wheremk is the mass of node k, rk and dk the rigidity of springs and dumping coefficients.
There are N nodes in the grid, from 1 to N , and two nodes outside of the grid, a limiting
node 0, and a limiting node N + 1. The limiting node corresponding with node 0 is called
the down node, while the limiting node corresponding with node N + 1 is called the up
node. Other models not part of the 1D grid may be added if any.

To enable 1D gridded models, one should set the select flag ‘grid1d’. In cmz it is
achieved setting the select flag in ‘selseq.kumac’, like

sel grid1d

With make, the SEL variable should contain grid1d. For example to select grid1d and
monitor, it could be

SEL = grid1d,monitor

3.3.1 Setting dimensions for 1D gridded model

In that case the number of nodes, the number of states and tranferts per node, and the
number of limiting transfers and states are required. These dimensions has to be entered
in the ‘DimEtaPhi’ sequence. The parameters for cells are

n_node Number of cell nodes in the 1D grid.

n_dwn Number of limiting cells with index -1, i.e. number of cells in the limiting down
node.

n_up Number of limiting cells with index +1, i.e. number of cells in the limiting up
node.

n_mult Number of cells in each node (multiplicity).

Chapter 3: Advanced Miniker programming 18

The parameters for transfers, are similarly m_node, m_dwn, m_up, m_mult. The layout of
their declaration should be respected as the precompiler matches the line. Also this pro-
cedure is tedious, it should be selected for debuging processes (use the flag sel dimetaphi
in “selsequ.kumac”. Otherwise, the dimensioning sequence will be automaticaly generated,
which is smart but can lead to diffculty in interpreting syntax errors. Once a model is cor-
rectly entred, turn off the sel flag and further modifications will automatically generate the
proper dimensions. The correctness of dimensionning should nevertheless always be checked
in principal.f, where you can also check that null valued parameters as lp, mobs, nxp
will suppress parts of the code - this is signaled as Fortran comment cards.

In our example, there are three grids of cell and transfer variables (n_node=m_node=3).
There are two cells and two transfers in each node (n_mult=2 and m_mult=2). There is no
limiting condition for the states in the down node therefore n_up=0. There is no transfer
for the first limiting node, and therefore m_dwn=0. There are two states in the limiting node
0, the down node, n_dwn=2, and two transfers in the limiting last node the node up, and
m_up=2:

! ++
! nodes parameters, and Limiting Conditions (Low and High)
! ++

parameter (n_node=3,n_dwn=2,n_up=0,n_mult=2);
parameter (m_node=3,m_dwn=0,m_up=2,m_mult=2);

! __

3.3.2 1D gridded Model coding

The model code and parameters go in the ‘zinit’ sequence.

Parameters

A value for the Miniker parameters and the model parameters should be given in ‘zinit’,
in our example we have

!%%%%%%%%%%%%%%%%%%%%%%
! Parameters
!%%%%%%%%%%%%%%%%%%%%%%
real rk(n_node),rd(n_node),rmassm1(n_node);

data rk/n_node*1./;
data rd/n_node*0.1/;
data rmassm1/n_node*1./;

dt=.01;
nstep=5 000;
modzprint = 1000;
time=0.;

Limiting conditions

There are four mortran blocks for node and up and down, both for states and transfers:

set_dwn_eta
down node cells

Chapter 3: Advanced Miniker programming 19

set_up_eta
up node cells

set_dwn_phi
down node transfers

set_up_phi
up node transfers

The following scheme illustrates the example:
!%%%%%%%%%%%%%%%%%%%%%%%%%%==

! Maillage convention inode

!%%%%%%%%%%%%%%%%%%%%%%%%%% Open ended

!(2 Down Phi Eta (n_node)

! Eta) \| .-----. .-----. .-----. /

! wall \|-\/\/\-| |-\/\/\-| | . . . -| |-\/\/\- |dummy

! pos \|--***--| 1 |--***--| 2 | . . . -| n |--***-- |Phis

! speed \| 1 |_____| 2 |_____| n |_____| n+1 \(2 Up Phi)

!

Two states are associated with the down node, they correspond to the position and speed
of the wall. As the wall don’t move these states are initialized to be 0, and the cells are
stationnary cells, therefore these values remain 0.

! Down cells (wall)
! -----------------
eta_pos_wall = 0; eta_speed_wall = 0.;

set_dwn_eta
< var: eta_pos_wall, fun: deta_pos_wall = 0.;
var: eta_speed_wall, fun: deta_speed_wall= 0.;

>;

There are 2 limiting transfers in the up node. They correspond with an open end and
are therefore set to 0.

! limiting Transfers : dummy ones
! -------------------------------
set_Up_Phi
< var:ff_dummy_1, fun: f_dummy_1=0.;
var:ff_dummy_2, fun: f_dummy_2=0.;

>;

Starting points

The cell node state values are initialized. They are in an array indexed by the inode vari-
able. In the example the variable corresponding with position is eta_move and the variable
corresponding with speed is eta_speed. Their initial values are set with the following
mortran code

!---------------
! Initialisation
!---------------
;
do inode=1,n_node <eta_move(inode)=0.01; eta_speed(inode)=0.0;>;

Chapter 3: Advanced Miniker programming 20

If any transfer needs to be given a first-guess value, this is also done using inode as the
node index.

Grid node equations

Each node is associated with an index inode. It allows to refer to the preceding node, with
inode-1 and the following node inode+1. The node states are declared in set_node_Eta
block and the transfers are in set_node_Phi blocks.

In the example, the cells are declared with
! node cells
! ----------
;
set_node_Eta
< var: eta_move(inode), fun: deta_move(inode) = eta_speed(inode);
var: eta_speed(inode),
fun: deta_speed(inode) = rmassm1(inode)

*(- ff_spring(inode+1) + ff_spring(inode)
- ff_dump(inode+1) + ff_dump(inode)
);

>;

Note that the inode is dummy in the var: definition and can as well be written as: var:
eta_move(.).

The transfers are (ff_spring corresponds with springs and ff_dump with dumps):
!%%%%%%%%%%%%%%%%%%%%%%
! Transfer definition
!%%%%%%%%%%%%%%%%%%%%%%
! node transfers
! --------------
! convention de signe spring : comprime:= +
set_node_Phi
< var: ff_spring(.),
fun:
f_spring(inode)= -rk(inode)*(eta_move(inode) - eta_move(inode-1));
var: ff_dump(.),
fun:
f_dump(inode) = -rd(inode)*(eta_speed(inode) - eta_speed(inode-1));

>;

The limiting states and transfers are associated with the states or transfers with index
inode+1 or inode-1 appearing in node cell and transfer equations (inode-1 for down
limiting conditions and inode+1 for up limiting conditions) in their order of appearance. In
our example, in the eta_speed state node equation ff_spring(inode+1) appears before
ff_dump(inode+1) and is therefore associated with ff_dummy_1 while ff_dump(inode+1)
is associated with the ff_dummy_2 limiting transfer, as ff_dummy_1 appears before ff_
dummy_2 in the limiting up transfers definitions. Verification of the grid index coherence
should be eased with the following help printed in the listing header:

Chapter 3: Advanced Miniker programming 21

--------------- Informing on Dwn Eta definition ---------------
Var-name, Function-name, index in eta vector

eta_pos_wall deta_pos_wall 1 [
eta_speed_wall deta_speed_wall 2 [

-------------- Informing on Eta Nodes definition --------------
Var-name, Function, k2index of (inode: 0 [1,...n_node] n_node+1)

eta_move deta_move 1 [3 ... 7] 9
eta_speed deta_speed 2 [4 ... 8] 10

---------------- Informing on Up Phi definition -------------
Var-name, Function-name, index in ff vector

ff_dummy_1 f_dummy_1] 7
ff_dummy_2 f_dummy_2] 8
ff_move_sum f_move_sum] 9
ff_speed_sum f_speed_sum] 10

--

-------------- Informing on Phi Nodes definition ---------------
Var-name, Function, k2index of (inode: 0 [1,...m_node] m_node+1)

ff_spring f_spring -1 [1 ... 5] 7
ff_dump f_dump 0 [2 ... 6] 8

--

All variable names and functions are free but has to be different. Any particular node-
attached variable k is referred to as: ‘(inode:k)’, where k has to be a Fortran expression
allowed in arguments. The symbol ‘inode’ is reserved. As usual other Fortran instructions
can be written within the Mortran block ‘< >’ of each set_ block.

3.4 Double precision

The default for real variables is the real Fortran type. It is possible to use double pre-
cision instead. In that case all the occurences of ‘real ’ in mortran code is substituted
with ‘double precision ’ at precompilation stage, and the Lapack subroutine names are
replaced by the double precision names. Eventual users’declaration of complex Fortran
variables is also changed to double complex .

This feature is turned on by sel double in ‘selseq.kumac’ with cmz and double = 1 in
the ‘Makefile’ with make.

In order for the model to run as well in double as in simple precision, some care should be
taken to use the generic intrinsic functions, like sin and not dsin. No numerical constant
should be passed directly to subroutines or functions, but instead a variable with the right
type should be used to hold the constant value, taking advantage of the implicit casts to
the variable type.

Chapter 3: Advanced Miniker programming 22

3.5 Partial Derivatives

The partial derivative rules are included in a Mortran macro series in ‘Derive_mac’ of
Miniker files. When using an anusual function, one should verify that the corersponding
rules are in that file. It is easy to understand and add new rules in analogy with the already
existing ones.

For instance, suppose one wants to use the intrinsic Fortran function abs(). Its deriva-
tives uses the other function sign() this way:

&’(ABS(#))(/#)’ = ’((#1)(/#2)*SIGN(1.,#1))’

In such cases when one is adding a new rule, it is important to use the generic function
names only (i.e. sin not dsin), because when compilating Miniker in the double precision
version, or complex version, the generic names will correctly handle the different variable
types - which is not the case when coding with specific function names.

3.5.1 Derivating a power function

Partial derivative of a function in exponent is not secure in its Fortran form
g(x,y)**(f(y)). It should be replaced by power(g,f) of the Miniker ‘mathlib’, or by
the explicit form exp(f(y)*log(g(x,y))).

Its derivative will have the following form:

∂xf
g = gf g−1∂xf + f g log f∂xg

= f g−1(g∂xf + f∂xg)

and is in the macros list already defined in: ‘DERIVE_MAC’.

3.6 Rule of programming non continuous models

Some models may originally be non continuous, as the ones using a Fortran instruction IF.
Some may use implicitly a step function on a variable. In such cases, the model has to be
set in a derivable form, and use a “smooth step” instead. One should be aware of that this
apparently mathematical treatment currently indeed leads to a physical question about the
macroscopic form of a physical law. At a macroscipic level, a step function is usually a
nonsense. Taking the example of phase-change, a fluid volume does not change phase at
once, and a “smooth change of state” is a correct macroscopic model.

Miniker provides with the smooth step function Heavyside1 in the Miniker ‘mathlib’:

Delta = -1."K";
A_Ice = heavyside("in:" (T_K-Tf), Delta, "out:" dAIce_dT);

in this example, Tf is the ice fusion-temperature, A_ice gives the ice-fraction of the
mesh-volume of water at temperature T_k. The smooth-step function is a quasi hyperbolic
tangent function of x/∆, normalised from 0 to 1, with a maximum slope of 2.5, see figure
Figure 3.1.

1 This naming is a joke for “Inert” Heaviside function.

Chapter 3: Advanced Miniker programming 23

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 0 50 100 150 200 250 300

C
om

po
si

te
 s

ec
to

r
pr

od
uc

tio
n

Time (Years)

sigma = 0.20
sigma = 0.99

Figure 3.1: Heaviside function and derivative
For Mortran to be able to symbolicaly compute the partial derivarives, the rule is in the

table of macros as:
&’(HEAVYSIDE(#,#,#))(/#)’ = ’((#1)(/#4)*HEAVYDELTA(#1,#2,#3))’

which uses the Foratn entry point HeavyDelta in the Fortrsan function heavyside.
Another type of problem arises when coding a var=min(f(x),g(x)) Fortran instruction.

In such a case one does not want a derivative and one will code:
var = HeavySide(f(x)-g(x),Delta,dum)*g(x) + (1.-HeavySide(f(x)-g(x),Delta,dum)*f(x);

or equivalently:
var = HeavySide(f(x)-g(x),Delta,dum)*g(x) + HeavySide(g(x)-f(x),-Delta,dum)*f(x);

Warning: the value of the argument Delta is important because it will fix the maximum
slope of the function that will appear as a coefficient in the Jacbian matrices.

3.7 Parameters

It is possible to specify some Fortran variables as specific model parameters. Model pa-
rameters may be used in sensitivity studies (see Section 4.1.1 [Sensitivity to a parameter],
page 29) and in the adjoint model (see Section 4.2.4 [Sensitivity of cost function to param-
eters], page 32). Nothing special is done with parameters with Kalman filtering.

The parameters are fortran variables that should be initialized somewhere in ‘zinit’.
For a variable to be considered as a parameter, it should be passed as an argument to the
Free_parameters macro. For example if apar and cpar (from the predator example) are
to be considered as parameters, Free_parameters should be called with:

Chapter 3: Advanced Miniker programming 24

Free_parameter: apar, cpar;

When used with grid1d models (see Section 3.3 [Describing 1D gridded model], page 17)
the inode number may appear in parenthesis:

Free_parameter: rd(1), rk(2);

3.8 Observations and data

Some support for observations and interactions with data is available. The observations
are functions of the model variables. They don’t have any action on the model result, but
they may (in theory) be observed and measured. The natural use of these observations is
to be compared with data that correspond with the values from real measurements. They
are used in the Kalman filter (see Section 4.3 [Kalman filter], page 33).

The (model) observation vector is noted ω and the observation function is noted h:

ω = h(η, ϕ)

3.8.1 Observations

The observation functions are set in a set_probe block in the ‘zinit’ sequence.

For example suppose that, in the predator-prey model, we only have access to the total
population of preys and predators, we would have:

set_probe
< eqn: pop = eta_pred + eta_pray;
>;

The number of observations is put in the integer variable mobs. The observation vector
corresponds with the part of the ff(.) array situated past the regular transferts, ff(mp+.),
and is output in the file ‘obs.data’.

Currently this code is only used if the Kalman code is activated. This may be changed
in the future.

The convention for data is that whenever some data are available, the logical variable
zgetobs should be set to ‘.true.’. And the vobs(.) vector should be filled with the data
values. This vector has the same dimension than the observation vector and each coordinate
is meant to correspond with one coordinate of the observation vector.

This feature is turned on by setting the logical variable zdata to ‘.true.’, and the
zgetobs flag is typically set in the ‘zsteer’ sequence (see Section 2.4.1 [Executing code at
the end of each time step], page 12). Every instant data are available (zgetobs is true) the
observations are written to the file ‘data.data’. With the Kalman filter more informations
are output to the ‘data.data’ file, see Section 4.3.2.2 [Kalman filter results], page 35.

3.9 Entering model size explicitely

It is possible to enter the model dimensions explicitely, instead of generating them au-
tomatically, as it was done previously. This feature is turned on by sel dimetaphi in
‘selseq.kumac’ with cmz and dimetaphi added to the SEL variable in the ‘Makefile’ with
make.

Chapter 3: Advanced Miniker programming 25

3.9.1 The explicit size sequence

The dimension of the model is entered in the sequence ‘dimetaphi’, using the fortran
parameter np for eta(.) and mp for ff(.). For the Lotka-Volterra model, we have two cell
components and only one transfer.

parameter (np=2,mp=1);

You should not change the layout of the parameter statement as the mortran preprocessor
matches the line.

You also have to provide other parameters even if you don’t have any use for them. If
you don’t it will trigger fortran errors. It includes the maxstep parameter that can have
any value but 0, lp and mobs that should be 0 in the example, and nxp, nyp and nzp that
should also be 0. The layout is the following:

parameter (np=2,mp=1);
parameter (mobs=0);

parameter (nxp=0,nyp=0,nzp=0);
parameter (lp=0);
parameter (maxstep=1);

If there are observations, (see Section 3.8.1 [Observations], page 24), the size of the
observation vector is set in the ‘dimetaphi’ sequence by the mobs parameter. For example
if there is one observation:

parameter (mobs=1);

To specify parameters (see Section 3.7 [Parameters], page 23), the number of such pa-
rameters has to be declared in ‘dimetaphi’ with the parameter lp. Then, if there are two
parameters, they are first declared with

parameter (lp=2);

3.9.2 Entering the model equations, with explicit sizes

When sizes are explicit, another possibility exists for entering the model equations. The
use of symbolic names, as described in [Model equations], page 6 is still possible, and it
also becomes possible to set directly the equations associated with the eta(.) and ff(.)
vectors.

In case the symbolic names are not used, the model equations for cells and transfers are
entered using a mortran macro, f_set2, setting the eta(.) evolution with deta_tef(.)
and the transfer definitions ff(.) with Phi_tef(.).

[Macro]f_set Phi tef(i) = f(eta(.),ff(.))
This macro defines the transfer i static equation. f is a fortran expression
which may be function of cell state variables, ‘eta(1)’. . . ‘eta(np)’ and transfers
‘ff(1)’. . . ‘ff(mp)’.

In the case of the predator-prey model, the transfer definition for ϕmeet is:
f_set Phi_tef(1) = eta(1)*eta(2);

2 fun_set, or equivalently f_set, is a general mortran macro associating a symbol with a fortran expres-
sion. Here, it is the name of the symbol (eta) that has a particular meaning for the building of the
model.

Chapter 3: Advanced Miniker programming 26

[Macro]f_set deta tef(i) = g(eta(i),ff(.))
This macro defines the cell state component i time evolution model. g is a expression
which may be function of cell state variables, ‘eta(1)’. . . ‘eta(np)’ and transfers
‘ff(1)’. . . ‘ff(mp)’.

The two cell equations of the predator-prey model are, with index 1 for the prey (ηprey)
and index 2 for the predator (ηpred):

f_set deta_tef(1) = apar*eta(1)-apar*ff(1);
f_set deta_tef(2) = - cpar*eta(2) + cpar*ff(1);

The whole model is:
!%%%%%%%%%%%%%%%%%%%%%%
! Transfer definition
!%%%%%%%%%%%%%%%%%%%%%%
! rencontres (meeting)

f_set Phi_tef(1) = eta(1)*eta(2);

!%%%%%%%%%%%%%%%%%%%%%%
! Cell definition
!%%%%%%%%%%%%%%%%%%%%%%
! eta(1) : prey
! eta(2) : predator

f_set deta_tef(1) = apar*eta(1)-apar*ff(1);
f_set deta_tef(2) = - cpar*eta(2) + cpar*ff(1);

The starting points for cells are entered like:
! initial state
! -------------

eta(1) = 1.;
eta(2) = 1.;

If there are observations, they are entered as special transferts with index above mp, for
example:

f_set Phi_tef(mp+1) = ff(1) ;

3.10 Programming with cmz directives

3.10.1 Cmz directives used with Miniker

The main feature of cmz directive is to use code conditionnaly for a given select flag. For
example when the double precision is selected (see Section 3.4 [Double precision], page 21)
the use of the conditionnal double flag may be required in case there is a different subroutine
name for different types. If, for example, the user use the subroutine smysub for simple
precision and dmysub for double precision the following code is an example of what could
appear in the user code:
+IF,double
call dmysub(eta);
+ELSE

Chapter 3: Advanced Miniker programming 27

call smysub(eta);
+ENDIF

For a complete reference on cmz directives see the appendix Appendix B [Cmz directives
reference], page 50.

3.10.2 Using cmz directives in Miniker

In cmz the KEEP and DECK have their cmz directives preprocessed as part of the source
files extraction. And the +KEEP and +DECK directives are automatically set when creating
the KEEP or DECK. With make, files with these directives has to be created within the
files that are to be preprocessed by the cmz directives preprocessor.

To be processed by make, a file that contains cmz directives should have a file suffix
corresponding with the language of the resulting file and with the normal file suffix of that
language. More precisely ‘cm’ should be added before the normal file suffix and after the ‘.’.
Therefore if the resulting file language is associated with a suffix ‘.suf ’, the file with cmz
directives should have a ‘.cmsuf ’ suffix. The tradition is to have a different suffix for main
files and include files. To add directories searched for cmfiles (files with cmz directives) they
should be added to the CMFDIRS makefile variable, separated by ‘:’.

Rules for preprocessing of the files are defined in the file ‘Makefile.miniker’ for the file
types described in table 3.2:

language file type cmfile suffix suffix language
fortran main/deck .cmf .f ftn
fortran preprocessed main/deck .cmF .F f77
fortran preprocessed include/keep .cminc .inc f77
mortran main/deck .cmmtn .mtn mtn
mortran include/keep .cmmti .mti mtn

table 3.2: Association between file language, file type, file suffixes and language identifier
in cmz directives. A main file is called a deck in cmz and an include file is called a keep.

Chapter 4: Dynamic analysis of systems in Miniker 28

4 Dynamic analysis of systems in Miniker

4.1 Automatic sensitivity computation

An obvious advantage of having acces to the Jacobian matrices along the system trajectory
concerns automatic sensitivity analyses, as either:
• the sensitivity of all variables to perturbation in the initial condition of one state

variable;
• the same sensitivities to an initial pulse (or step) on a transfer;
• the same sensitivities to a series of pulses (or steps) on a transfer;
• the same for a change in a parameter, eventually during the run;
• the sensitivity of the matrix of advance in state space to a change in a parameter.

This is declared in Zinit as:
! -------------
! Sensitivities
! -------------
Sensy_to_var
< var: eta_pray, pert: INIT;
var: eta_pred, pert: INIT;

>;

Each variable at origin of a perturbation is declared as var:, and the type of perturbation
in pert:. Here, INIT conditions are only allowed because the two variables are states
variables. For transfers, pert: pulse corresponds to an initial pulse, pert: step_resp and
pert: step_eff to initial steps, the difference between _resp (response form) and _eff
(effect form) concerns the diagonal only of the sensitivity matrix (see Feedback gains in
non-linear models).

Non initial perturbation can also be asked for:
Sensy_to_var
<

!* var: eta_courant_L, pert: init at 100;
!* var: ff_T_czcx, pert: pulse at 100 every 20;
!* var: ff_Psi_Tczcx, pert: step_eff;
!* var: ff_Psi_Tczcx, pert: step_Resp at 10 every 100;
! *** premiers tests identiques a lorhcl.ref

var: ff_courant_L , pert: step_eff;
var: ff_T_czcx , pert: step_eff;
var: ff_Psi_Tczcx , pert: step_eff;
var: ff_Psi_Tsz , pert: pulse at 100 every 50;

>;

In this example taken from ‘lorhcl’, a sensitivity can increase so as to trespass the
Fortran capacity, so that each sensitivity vector (matrix column) can be reset at some
time-increment at III every JJJ;

It is noteworthy that these sensitivity analyses are not based on difference between two
runs with different initial states or parameter values, but on the formal derivatives of the

Chapter 4: Dynamic analysis of systems in Miniker 29

model. This method is not only numerically robust, but is also rigorously funded as based
on the TLS of the model1.

If the dimetaphi sequence is built by the users, he should declare the number of per-
turbing variables as nxp=:

parameter (nxp=np,nyp=0,nzp=0);

here, all state variables are considered as perturbing variables.
The sensitivity vectors are output in the result files ‘sens.data’ for cells and

‘sigma.data’ for transfers. In those files the first column corresponds again with time, and
the other columns are relative sensitivities of the cell states (in ‘sens.data’) and transfers
(in ‘sigma.data’) with respect to the initial value of the perturbed state.

In our predator-prey example, the second column of ‘sens.data’ will contain the deriva-
tive of η1(t) with respect to η1(t = 0). Drawing the second column of ‘sens.data’ against
the first one gives the time evolution of the sensitivity of eta-pred to a change in the initial
value of eta-pray. One can check in that it is set to 1 at t = 0:

Sensy_to: eta_pray 3 eta_pred 5
time \\ of: eta_pray eta_pred eta_pray eta_pred
0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
1.00000E-02 9.90868E-01 1.11905E-02 -1.26414E-02 9.98859E-01

The two last columns are the state sensitivity to a change in initial conditions of the
number of predators.

In the same way, the j+1th column of ‘sigma.data’ will be the derivative of φj(t) with
respect to ηi(t = 0). Here:

Sensy_to: eta_pray eta_pred
time \\ of: ff_interact ff_interact
0.00000E+00 1.60683E+00 8.47076E-01
1.00000E-02 1.59980E+00 8.18164E-01

the unique transfer variable gives rise to two sensitivity columns.
Sensitivity studies are usefull to assess the predictability properties of the corresponding

system.

4.1.1 Sensitivity to a parameter

A forward sensitivity to a parameter will be computed when specified as described in Sec-
tion 3.7 [Parameters], page 23. For example, suppose that the sensitivity to an initial change
in the apar parameter of the predator model is of interest.

The sensitivity calculs is turned on as a forward parameter specified on the Free_
parameter list:

Free_parameter: [fwd: apar, cpar];

The result are in ‘sensp.data’ for cells and ‘sigmap.data’ for transfers.
Sensy_to: pi_prandtl 3 4 pi_rayleigh_ 6
time \\ of: eta_courant_ eta_T_czcx eta_T_sz eta_courant_ eta_T

1 For a short introduction to automatic sensitivity analysis, see the document:
http://lmd.jussieu.fr/zoom/doc/sensibilite.ps, in French, or ask for the more complete research
document to a member of the TEF-ZOOM collaboration

http://lmd.jussieu.fr/zoom/doc/sensibilite.ps

Chapter 4: Dynamic analysis of systems in Miniker 30

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000
2.00000E-03 -4.77172E-03 -3.99170E-05 3.55971E-05 -9.94770E-05 -1.004

In the above example from ‘lorhcl’ sensitivity of the three states with respect to an
initial change in two parameters are independantly given (first line also numbers the column
to easy gnuplot using).

4.1.2 Advance matrix sensitivity

It is possible to look at the sensitivity of the matrix of advance in states space (the matrix
aspha) with regard to a parameter. The parameter must be accounted for in the parameter
number and be in the parameter list, flagged as the matrix mx parameter, like in

Free_parameter: [mx: apar], cpar;

This feature is associated with a selecting flag, ‘dPi_aspha’. One gets the result in the
matrix d_pi_aspha(.,.) of dimension (np,np).

This matrix may be used to compute other quantities, for example it may be used to
compute the sensitivity of the eigenvalues of the state-advance matrix with regard to the
[fwd] parameter. These additional computations have to be programmed by the user in
‘zsteer’ with matrices declared and initialized in ‘zinit’. An example is given in the
example ‘lorhcl’ provided with the Miniker installation files, following a method proposed
by Stephane Blanco.

4.2 Adjoint model and optimisation with Miniker

In the following a possible use of Miniker for optimisation is discussed. More precisely
the use of adjoint and control laws in Miniker are presented. Optimisation isn’t the only
application of these tools, but it is the most common one. In that case the adjoint may
be used to determine the gradient of a functional to perturbations in the control laws,
and an optimisation process can use this information to search for the optimum. Another
application of the adjoint is to compute the sensitivity of a cost function to parameters (the
ones declared in the free_parameters:’ list. Note that the cost function can be sensitive
to probe’s variables, even if these are uncoupled with standard variables in the forward
calculations; this is the case when minimizing a quadratic distance function between probes
(from the model) and the corresponding measurements.

The code is close transcription of the mathematical calculus described in
http://www.lmd.jussieu.fr/ZOOM/doc/Adjoint.pdf . It essentialy reverse time and
transpose the four Jacobian matrices: states and transfers are saved in array dimensionned
with maxstep Fortran parameter.

4.2.1 Overview of optimisation with Miniker

In the proposed method, Miniker is run twice, one time forward and then backward to
determine the trajectory and the adjoint model. After that the control laws are modified
by a program external to Miniker. The same steps are repeated until convergence. More
pecisely,

forward The command law h(t) is given (by an explicit law or taken from a file). The
trajectory is computed in a classical way, with the additionnal computation of
the functional to be optimised, J , prescribed with specific f_set macros. The
states, transfers and control laws are stored.

http://www.lmd.jussieu.fr/ZOOM/doc/Adjoint.pdf

Chapter 4: Dynamic analysis of systems in Miniker 31

backward The adjoint variable is computed from the last time T backward. The time
increment is re-read as it could have changed during the forward simulation.
The system is solved by using the same technics as in the forward simulation,
but with a negative time step.

external phase
Now the command should be corrected. This step isn’t covered here, but, for
example, minuit the optimisation tool from the CERN could be used. In order
to ease such a use of Miniker, the principal program has to be compiled as a
subroutine to be driven by an external program (see Section 3.2 [Calling the
model code], page 15).

The functionnal J to be optimised is defined as

J = ψ[η(T), ϕ(T), h(T)] +
∫ T

0

l[η(τ), ϕ(τ), h(τ)] dτ

Where ψ is the final cost function, l is the integrand cost function and h represents the
control laws variations.

The general use of the adjoint model of a system is the determination of the gradient of
this J functional to be optimised, with respect to perturbations of the original conditions
of the reference trajectory, that is, along its GTLS2.

4.2.2 Control laws

Each control law is associated with one cell or transfer equation, meaning that a command
associated with an equation does not appear in any other equation. It is still possible to
add commands acting anywhere by defining a transfer equal to that command.

The control laws associated with states are in the ux_com(.) array, control laws as-
sociated with transfers are in the uy_com(.) array. The control laws may be prescribed
even when there is no adjoint computed, nor any optimisation, and they are used during
simulation, in which case they will act as external sources. To enable the use of commands,
the logical flag Zcommand should be .true..

The command can be given either as:
1. a table of numerical values in the files ‘uxcom.data’ and ‘uycom.data’.
2. a function of the problem variables. To turn that feature on the logical flag Zlaw should

be set to .true. in ‘zinit’. The sequence ‘zcmd_law’ should hold the code filling the
ux_com(.) and uy_com(.) arrays, as the code from that sequence is used whenever
the control laws are needed. In that case the files ‘uxcom.data’ and ‘uycom.data’ will
be filled by the command values generated by the function along the trajectory.

For example in the Lotka-Volterra model, the parameter apar could be a control variable.
In that case, apar would be defined as the variable ux_com(1), and either entered as a law
in the sequence ‘zcmd_law’ , either written in the file ‘uxcom.data’ step by step. In that
case, there must be a perfect corresponodence between time of the commands and time of
the run.

2 General Tangent Linear System, i.e. the TLS circulating along a trajectory. See the explanation in the
document http://www.lmd.jussieu.fr/Zoom/doc/Adjoint.pdf (in French).

http://www.lmd.jussieu.fr/Zoom/doc/Adjoint.pdf

Chapter 4: Dynamic analysis of systems in Miniker 32

4.2.3 Cost function coding and adjoint modeling

First of all the flag zback should be set to .true. in order to allow adjoint model compu-
tation:

Zback=.true.;

The two functions cout_Psi corresponding with the final cost and cout_l corresponding
with the integrand cost are set up with the f_set macros.

[Macro]f_set cout Psi = f(eta(.),ff(.),ux com(.),uy com(.))
This macro defines the final cost function. f is a fortran expression which may be
function of cell state variables, ‘eta(1)’. . . ‘eta(np)’, transfers ‘ff(1)’. . . ‘ff(mp)’,
state control laws ‘ux_com(1)’. . . ‘ux_com(np)’, and transfer control laws
‘uy_com(1)’. . . ‘uy_com(mp)’.

[Macro]f_set cout l = f(eta(.),ff(.),ux com(.),uy com(.))
This macro defines the integrand cost function. f is a fortran expression
which may be function of cell state variables, ‘eta(1)’. . . ‘eta(np)’, transfers
‘ff(1)’. . . ‘ff(mp)’, state control laws ‘ux_com(1)’. . . ‘ux_com(np)’, and transfer
control laws ‘uy_com(1)’. . . ‘uy_com(mp)’.

For example, the following code sets a cost function for the masselottes model:

! Initialisation
F_set cout_Psi = eta_move(inode:1);

!and f_set cout_l integrand in the functionnal
F_set cout_l = 0.;

In that example the functional is reduced to the final value of the first state component.
Here, the adjoint vector will correspond to the final sensitivity (at t = 0) of that component
(here the first masselotte position) to a perturbation in all initial conditions3.

The following variables are set during the backward phase, and output in the associated
files:

var file explanation
v_adj(.) ‘vadj.data’ adjoint to eta(.)
w_adj(.) ‘wadj.data’ adjoint to ff(.)
wadj(mp+.) ‘gradmuj.data’ adjoint to ff(mp+.)
graduej(.) ‘gradxj.data’ adjoint to ux_com(.)
gradufj(.) ‘gradyj.data’ adjoint to uy_com(.)
hamilton ‘hamilton.data’ time increment, hamiltonian, cost function increment

4.2.4 Sensitivity of cost function to parameters

The sensitivity of the cost function to all the parameters given as arguments of Free_
parameters is computed. For the predator model the sensitivity of a cost function consisting
in the integral of the predator population with respect with apar an cpar is obtained with
a number of parameters set to 2 in ‘dimetaphi’:

3 For detailed explanation of the adjoint model, see the document in pdf or .ps.gz

http://www.lmd.jussieu.fr/penalty z@ ZOOM/doc/Adjoint.pdf
http://www.lmd.jussieu.fr/penalty z@ ZOOM/doc/Adjoint.pdf

Chapter 4: Dynamic analysis of systems in Miniker 33

parameter (lp=2);

And the cost function and Free_parameters list in ‘zinit’:
f_set cout_Psi = eta(2);
f_set cout_l = eta(2);
Free_parameters: apar,cpar;

apar and cpar also have to be given a value. The result is output in ‘gradpj.data’.

4.3 Kalman filter

The Kalman filter allows for data assimilation along the model run. In that case it is
assumed that there is a real-world model with stochastic perturbations on the states, and
that noisy observations are available. The situation implemented in Miniker corresponds to
a continuous stochastic perturbation on the state, and discrete noisy observations. In the
TEF this leads to:

∂tη(t) = g(η(t), ϕ(t)) +W (t)µ
ϕ(t) = f(η(t), ϕ(t))
ω(t) = h(η(t), ϕ(t)) + ν

The observations ω are available at discrete time steps t = si. The stochastic pertur-
bation on state, µ is characterized by a variance-covariance matrix Q and the noise on the
observation, ν has a variance-covariance matrix R. W relates states with stochastic per-
turbations. At each time step the Kalman filter recomputes an estimation of the state and
the variance-covariance matrix of the state.

In the following we use the example of a linear model with perturbation on state and
observation of state. The model has 3 states and 3 corresponding transfers (equal to the
states), but the error on the state is of dimension 2. The 3 states are observed. The
corresponding equations read:

∂tη1 = a11η1 + a12ϕ2 + a13ϕ3 +W11µ1 +W12µ2

∂tη2 = a21ϕ1 + a22η2 + a23ϕ3 +W21µ1 +W22µ2

∂tη3 = a31ϕ1 + a32ϕ2 + a33η3 +W31µ1 +W32µ2
ϕ1 = η1

ϕ2 = η2

ϕ3 = η3
ω1 = ϕ1 + ν1

ω2 = η2 + ν2

ω3 = η3 + ν3

4.3.1 Coding the Kalman filter

First of all the Kalman filter code should be activated. The observations code is also required
(see Section 3.8.1 [Observations], page 24). If cmz is used the code should be selected with
the select flag kalman in the ‘selseq.kumac’:

Chapter 4: Dynamic analysis of systems in Miniker 34

sel kalman

With make the kalman variable should be set to 1:
kalman = 1

The kalman code is actually used by setting the flag zkalman to .true., for example in
the ‘zinit’:

zkalman = .True.;

With the Kalman filter the dimension of estimated states, of the error on the state and
of the observation, the W matrix, the observation function, the initial variance-covariance
matrices on the state and the variance-covariance matrices of errors have to be given.

4.3.1.1 Kalman filter vectors dimensions

These dimensions should be set in the ‘zinit’ sequence. The size of the estimated states is
given by the parameter nkp. You can set this to np if all the states are estimated, but in
case there are some deterministic state variables, nkp may be less than np. In that case the
first nkp elements of eta(.) will be estimated using the Kalman filter.

The error on state dimension is associated with the parameter nerrp and the size of the
observations vector is mobs (see Section 3.8.1 [Observations], page 24). In our example the
dimensions are set with:

parameter (nkp=np);
parameter (mobs=3);
parameter (nerrp=2);

All the states are estimated, there are 3 observation functions and the error on the state
vector is of dimension 2.

If the sizes are set explicitely, the parameters should be set in ‘dimetaphi’.

4.3.1.2 Error and observation matrices

Initial variance-covariance matrix on the state

The variance-covariance on the state matrix is covfor(.,.). The initial values have to be
given for this matrix, as in our example:

covfor(1,1) = 1000.; covfor(1,2) = 10.; covfor(1,3) = 10.;
covfor(2,1) = 10.; covfor(2,2) = 5000.; covfor(2,3) = 5.;
covfor(3,1) = 10.; covfor(3,2) = 5.; covfor(3,3) = 2000.;

This matrix is updated by the filter at each time step because the states are pertubated
by some noise, and when assimilation takes place as new information reduce the error.

Observations and error on state matrix

The matrix that relates errors on states vector components to states, corresponding with
W is mereta(.,.). In our example it is set by:

mereta(1,1) = 1.; mereta(1,2) = 0.;
mereta(2,1) = 0.; mereta(2,2) = 1.;
mereta(3,1) = 0.5; mereta(3,2) = 0.5;

The observation functions are set by a f_set macro with Obs_tef(.) as described in
Section 3.8.1 [Observations], page 24. In our example the observation functions are set by:

Chapter 4: Dynamic analysis of systems in Miniker 35

f_set Obs_tef(1) = ff(1) ;
f_set Obs_tef(2) = eta(2);
f_set Obs_tef(3) = eta(3);

Error variance-covariance matrices

The variance-covariance matrix on observation noise is covobs(.,.) set, in our example,
by:

covobs(1,1) = 0.3; covobs(1,2) = 0.; covobs(1,3) = 0.;
covobs(2,1) = 0.; covobs(2,2) = 0.1; covobs(2,3) = 0.;
covobs(3,1) = 0.; covobs(3,2) = 0.; covobs(3,3) = 0.2;

The variance-covariance matrix on state noise is coveta(.,.) set, in our example, by:
coveta(1,1) = 0.2; coveta(1,2) = 0.001;
coveta(2,1) = 0.001; coveta(2,2) = 0.1;

These matrices are not changed during the run of the model as part of the filtering
process. They may be changed by the user in ‘zsteer’.

4.3.2 Kalman filter run and output

4.3.2.1 Feeding the observations to the model

The observations must be made available to the model during the run. These observations
are set in the vobs(.) array, and the assimilation (also called the analysis step of the filter)
takes place if the logical variable zgetobs is .true. (see Section 4.3.4 [Data], page 36).

These steps are typically performed in the ‘zsteer’ sequence. In this sequence there
should be some code such that when there are data ready to be assimilated, zgetobs is set
to .true. and the data is stored in vobs(.), ready for the next step processing.

4.3.2.2 Kalman filter results

The estimated states and transfers are still in the same ‘.data’ files, ‘res.data’ and
‘tr.data’ and there is the additional file with observations, called ‘obs.data’ (see Sec-
tion 3.8.1 [Observations], page 24). Each time zgetobs is .true. the data, and the op-
timally weighted innovations are output in the file associated with data, ‘data.data’ (see
Section 4.3.4 [Data], page 36).

4.3.3 Executing code after the analysis

The analysis takes place before the time step advance when zgetobs is .true.. It may be
usefull to add some code after the analysis and before the time step advance. For example
the analysis may lead to absurd values for some states or parameters, it could be usefull to
correct them in that case. The sequence included after the analysis is called ‘kalsteer’.
At this point, in addition to the usual variables the following variables could be usefull:

etafor(.)
The state before the analysis.

kgain(.) The Kalman gain.

innobs(.)
The innovation vector (observations coherent with the states minus data values).

Chapter 4: Dynamic analysis of systems in Miniker 36

covana(.,.)
The variance-covariance error matrix after the analysis.

At each time step the derivative of the observation function with respect to transfer and
cells variables are recomputed. The elimination of transfers is also performed to get the
partial derivative of the observation function of the equivalent model, with states only, with
respect to the states. In other words, the Kalman filter does not follow the TEF formalism,
because the advance of the var-covar matrix could not yet be set in the TEF form.

obspha(.,.)
derivative of observation function in state space with respect to cell variables.

4.3.4 Data

4.4 Feedback gain

The feedback dynamic gain associated with a feedback loop can be expressed as the inverse
Borel transform of the coefficient of the reduced scalar coupling matrix, g(τ), associated
with a transfer. A Borel sweep provides this g(τ). Therefore it is an interesting tool for the
characterization of the feedback loop4.

As explained in the ZOOM web page document http://www.lmd.jussieu.fr/
ZOOM/doc/Feedback_Gain.pdf, this allows for the calculation of the dynamic gain and
factor of any feedback that goes through a unique transfer variable. An example of the
conclusions that can be drawn from such an analysis is provided in the same document.

For linear systems – whose GTLS are autonomous along the whole trajectory – the τ
function of the feedback gain is independent of the position on the system trajectory. But
in general it is dependant, and one can analyse the function g(τ ; t) defined on a segment t
of the trajectory.

The document introducing the TEF-ZOOM technique explains how a Crank-Nicolson
scheme for the time discretisation symbolically gives the solution of the Borel transform of
the system. One can identify the dt variable with the Borel τ within a factor 2. Hence, to
numerically study the τ dependency of the transform of various coefficients in the system
coupling matrix at one point in time, one can calculate the Borel transform of the TLS
solutions by making a time-step sweep.

The function g(τ ; t) is simply output for the feedback gain attached to a unique ff(k)
transfer variable. All the relevant informations should be entered in the ‘zinit’ sequence.

4.4.1 Specifying the Borel sweep

First of all the logical flag ZBorel should be raised:
ZBorel=.true.;

The index of the studied transfer is given in the index_ff_gain variable
index_ff_gain=7;

At each time step a Borel sweep may be performed. The time steps of interest are
specified with three variables, one for the first step, one for the last step and one for the
number of steps between two Borel sweeps:

4 More generally, the Borel sweep allows the numerical study of the dependency in τ of the Borel transform
of various coefficients in the system coupling matrix.

http://www.lmd.jussieu.fr/penalty z@ ZOOM/doc/penalty z@ Feedback_Gain.pdf
http://www.lmd.jussieu.fr/penalty z@ ZOOM/doc/penalty z@ Feedback_Gain.pdf

Chapter 4: Dynamic analysis of systems in Miniker 37

istep_B_deb
First time step for the Borel sweep.

istep_B_fin
Last time step for the Borel sweep.

istep_B_inc
Number of time steps between Borel sweeps.

In the following examples Borel sweeps are performed from the time step 1000 up to the
time step 1200, with a sweep at each time step:

istep_B_deb=1000;
istep_B_fin=1200;
istep_B_inc=1;

For each Borel sweep, the range of the τ variable should be set. As this is a multiplicative
variable the initial value, a multiplicative factor and the number of values are to be given.

tau_B_ini
Initial value for τ .

tau_B_mult
Multiplicative factor for sweep in tau.

itau_max Number of τ values.

For example, in the following, at each time step, the Borel transform will be computed

for τ values starting at 0.2 and then multiplied a hundred times by
√√

2
tau_B_ini=0.2;
tau_B_mult=sqrt(sqrt(2.));
itau_max=100;

When the initial value of τ is set to a negative value (i.e. tau_B_ini=-0.2;), the Borel
sweep will first be applied with itau_max negative values for -0.2, tau_B_mult*(-0.2),...,
then for the zero value, and finally for the symetric positive values, resulting in 2*itau_
max+1 values for τ .

The whole example reads
! -------------------
! Feedback gain
! Borel
! -------------------
ZBorel=.true.;
if ZBorel
< istep_B_deb=1000;

istep_B_fin=1200;
istep_B_inc=1;

;
index_ff_gain=7;
tau_B_ini=0.2;
tau_B_mult=sqrt(sqrt(2.));
itau_max=100;

Chapter 4: Dynamic analysis of systems in Miniker 38

z_pr/Borel/:tau_B_mult,tau_B_ini*(tau_B_mult)**itau_max;
>;

Instead of using the index of the transfer in index_ff_gain it is possible to specify the
name of the transfer.In that case the transfer is specified by the zborel for macro. For
example if the transfer selected for the feedback gain computation is b transfer, it can be
selected with:

zborel for: b_transfer;

4.4.2 Borel sweep results

The file ‘tau_Borel.data’ gives the τ values of the tau sweep, and the file ‘gains.data’
records the feedback gain function values of g(τ), with one line for each sweep along the
trajectory. In the 1.01 version, a new feature is also provided giving the poles and residuals
of the Borel transform in the file ‘vpgains.data’. Consult the subroutine Boreleig for
(not definitive) output description.

One can easily obtain the surface contours of g(t, τ) using the Fortran program provided
as ‘gains.f’ and its compilation shell ‘gains.xqt’, that builds 2D histograms for PAW, in
which one uses the ‘borels.kumac’ provided kumac.

4.5 Stability analysis of fastest modes

The preceding analyses are done along with a simulation. One has also the possibility
of using in a more classical fashion the state advance matrix Ast, after the end of the
simulation. Code to perform the SVD (Singular Value Decomposition) of the state matrix
Ast and also of Ast + A†

st is provided with Miniker. The singular elements of these two
matrices correspond to the most rapid modes of instability of the perturbed system.

The Singular value decomposition of a matrix is noted

UwV †

An executable file, ‘sltc.exe’ is generated and running this file will produce the corre-
sponding results.

4.5.1 Singular Value Decomposition with cmz

The cmz macro smod SLTC prepares a main program (‘circul’ of +PATCH SLTC), provided
as a base for user’s own analysis, in the directory ‘sltc/’.

4.5.2 Singular Value Decomposition with make

To compile the singular value decomposition executable with make you can do
make sltc.exe

If you want to have a separate directory for the SVD, you should copy the sequence
‘dimetaphi.inc’ (or make a link to that file) to the directory. You should also copy the file
‘Makefile.sltc’ from the ‘template/’ directory in this directory, rename it ‘Makefile’ and
set the Miniker directory path in the miniker_dir variable. For example, if the Miniker
directory is in ‘/u/src/mini_ker’:

miniker_dir = /u/src/mini_ker

Chapter 4: Dynamic analysis of systems in Miniker 39

4.5.3 Singular Value Decomposition run and output

As it is, the ‘sltc.exe’ executable generated by the compilation determines the SVD. This
program requires ‘title.tex’ (see [Title file], page 8) to transmit a title for output and
graphics, and ‘aspha.data’ (see Section 2.3.3 [Running a simulation and using the output],
page 11) to access the state matrix. To get access to these files (in case they are not in
the current directory) it is possible to make a link to the corresponding files in the model
directory. Once it is done the program may be run:

./sltc.exe

The files ‘u.data’, ‘w.data’, and ‘v.data’ holds the singular elements for Ast (U , w and
V), and ‘us.data’, ‘ws.data’, and ‘vs.data’ holds the singular elements of Ast +A†

st. The
corresponding macros ‘.kumac’ for PAW5 are also generated.

4.6 Generalized linear tangent system analysis

The state matrix Ast may also be used to compute the GTLS propagator (or state transition
matrix applied to perturbation), after the simulation. The algorithm is a finite product of
5th order development of Φ(t+ δt, t) = expAstδt. Numerous element of analysis are given,
in particular the determination of the Lyapunov exponents of the system.

An executable file, ‘sltcirc.exe’ is generated and running this file will produce the
corresponding results.

4.6.1 Generalized tangent linear system with cmz

The cmz macro smod SLTCIRC prepares a main program (‘circule’ of +PATCH SLTCIRC),
in the directory ‘sltcirc/’.

4.6.2 Generalized tangent linear system with make

To compile the GTLS analysis executable with make you can do

make sltcirc.exe

If you want to have a separate directory for the GTLS analysis, you should copy the
sequence ‘dimetaphi.inc’ (or make a link to that file) to the directory. You should also copy
the file ‘Makefile.sltcirc’ from the ‘template/’ directory in this directory and rename
it ‘Makefile’ and set the Miniker directory path in the miniker_dir variable.

4.6.3 Generalized tangent linear system analysis run and output

The ‘sltcirc.exe’ executable generated by the compilation computes the elements of anal-
ysis of the system. This program requires ‘title.tex’ to transmit a title for output and
graphics (see [Title file], page 8), ‘aspha.data’ to access the state matrix and ‘dres.data’,
because time-step can be changed along the simulation (see Section 2.3.3 [Running a simu-
lation and using the output], page 11)6. To get access to these files (in case they are not in
the current directory) it is possible to make a link to the corresponding files in the model
directory. Once it is done the program may be run:

./sltcirc.exe

5 Explanation in the research paper about SLTC (Al1 2003) available on request.
6 cf our research texts about propagator analyses in SLTC, and “les Gains sur champs (Al1 2003-2004)”

Chapter 4: Dynamic analysis of systems in Miniker 40

The following table gives the correspondence between variable name, result file and
ntuple number, with a short explanation:

var file ntuple explanation
p(.,.) ‘phit.data’ 55 propagator from 0 to t, Φ(t, 0)
up(.,.) ‘uphit.data’ 50 Left singular vectors U in the SVD of

Φ
wp(.) ‘wphit.data’ 51 singulat values w in the SVD of Φ
vp(.,.) ‘vphit.data’ 52 Right Singular Vectors V in the SVD

of Φ
wr(.) ‘wr.data’ 53 real part of eigen values of Φ(t, 0)
wi(.) ‘wi.data’ 54 imaginary part of eigen values of Φ(t, 0)
lwp(.) ‘lwphit.data’ 67 Lyapunov exponents

Chapter 5: Advanced use of Miniker with make 41

5 Advanced use of Miniker with make

5.1 Make variables

The ‘Makefile.miniker’ Makefile provided in the distribution should be included as it
defines a lot of important variables and rules.

The following make variables can be set by the user:

miniker_dir
that variable should hold the Miniker sources directory. If you installed Miniker
that variable should be set to ‘$(includedir)/mini_ker’. If you use the
sources right from the sources directory it should be set to the sources package
directory.

MTNDIRS This variable can hold a ‘:’ delimited list of directories that will be searched
for mortran include files.

CMFDIRS This variable can hold a ‘:’ delimited list of directories that will be searched
for cmz directive include files.

SEL This variable holds a ‘,’ delimited list of select flags, for example monitor,
grid1d, debug.

LDADD This variable can be used to add libraries flags and files. It is used in the default
linking command/rule.

miniker_user_objects
This variable should hold a space separated list of additional object files to be
linked with the model and helper object files.

CAR2TXTFLAGS
cmz directives preprocessor flag.

kalman This variable should be set to 1 if you want to use the kalman filter (see Sec-
tion 4.3 [Kalman filter], page 33).

double This variable should be set to 1 if you want to have a double precision code
(see Section 3.4 [Double precision], page 21).

The following variables are allready set and may be used (some are set by ./configure
see Section A.4.2 [Configuration], page 48):

miniker_principal_objects
The list of object files needed for the model build, together with some helper
object files often used but not strictly required for the linking.

DEPDIR The name of a hidden directory containing the dependencies computed for the
main mortran files.

F77
FC
FFLAGS

LDFLAGS Compiler and linker related variables set by ./configure.

Chapter 5: Advanced use of Miniker with make 42

LIBS This variable should hold the link flags and files required to build Miniker, set
by ./configure.

CAR2TXT
MORTRAN
MTNFLAGS
MTNDEPEND

Preprocessor and preprocessor flags, set by ./configure.

5.2 Rules

The following rules are defined in the ‘Makefile.miniker’ file.

miniker-clean
remove the fortran files generated from the mortran files. Remove the object
files.

miniker-mtn-clean
remove the mortran files generated from the files with cmz directives.

Various rules to preprocess files with cmz directives and mortran files and to
compile fortran files.

If the user needs a mortran main file, he may take advantage of the rule used to compute
the dependencies of a mortran file. If the file is called, say, ‘mtnfile.mtn’ leading to
‘mtnfile.f’, the following include should lead to the automatic creation, updating and
inclusion of a file describing the dependencies of ‘mtnfile.mtn’ in the ‘Makefile’:

include $(DEPDIR)/mtnfile.Pf

5.3 Linking rule

The rule used for the linking of the model file is not in the ‘Makefile.miniker’ file but
should be provided in the user ‘Makefile’ for more flexibility. The default rule uses the vari-
ables miniker_user_objects for additional object files and LDADD for additionnal linking
flags and files, those variables are there to be changed by the user.

The object files required by the Miniker code are in the make variable miniker_
principal_objects, this variable is also used. The value of the variables FC for the
Fortran compiler, FFLAGS for the Fortran compiler flags and LDFLAGS for the linker flags
should be set to right values; LIBS should also be right and hold the link flags and link files
required to compile the Miniker model. These variables are set by by ./configure during
configuration (see Section A.4.2 [Configuration], page 48) and used in the default rule:
$(model_file): $(miniker_user_objects) $(miniker_principal_objects)

$(FC) $(FFLAGS) $(LDFLAGS) $^ $(LDADD) $(LIBS) -o $@

In case this isn’t right it may be freely changed. You should certainly refer to the section
“Top” in GNU Make Manual manual to understand what that rule exactly means and make
your own.

Concepts index 43

Concepts index

$
‘$dimetaphi’ . 8
‘$zinit’ . 8

A
adjoint . 30
‘aspha.data’ . 11
‘aspha.data’, GTLS . 39
‘aspha.data’, SVD . 39

B
Borel sweep . 36
Borel sweep graphics . 38
Borel sweep results . 38

C
cells . 1
cernlib . 47
command law . 31
compilation . 9
configuration of source . 48
controlling the run . 12

D
‘data.data’ . 24, 35
‘dimetaphi’ . 25
‘dimetaphi’, Kalman filter . 34
down node . 17
‘dres.data’ . 11, 12
‘dres.data’, GTLS . 39

E
equations, grid . 20
error vector dimension . 34

F
FDL, GNU Free Documentation License 54
feature setting . 15
Feedback gain . 36
ffl (linearity test) . 13
final cost . 31

G
Generalized linear tangent system 39
‘gradpj.data’ . 32
graphics. 12

graphics with gnuplot . 12
graphics with PAW . 12
graphics, Borel sweep . 38
GTLS . 39
GTLS output . 39
GTLS run . 39

H
Heaviside function . 22

I
initial variance-covariance on states 34
installation with make . 49
integrand cost . 31

K
Kalman filter . 33
Kalman filter output . 35
Kalman filter results . 35

L
lapack . 47
limiting conditions . 18
linearity test . 13
logical flags . 15
Lyapunov exponents . 39

M
‘Makefile.miniker’ . 41
‘Makefile.sltc’ . 38
‘Makefile.sltcirc’ . 39
‘mini_ker.cmz’ . 47
mod . 8
model equations . 25
model size . 25
‘Model.hlp’ . 11
mortran . 1, 3
mortran, with make . 47

O
‘obs.data’ . 24
observation function . 24
observations . 34
observations, general . 33
optimisation . 30
output file . 11
output, GTLS . 39
output, Kalman filter . 35

Concepts index 44

output, sensitivity . 29
output, SVD . 39

P
printing . 14
Programming environments 47
propagator . 39

R
requirements, with make . 47
‘res.data’ . 11
results, Borel sweep . 38
results, Kalman filter. 35
run, GTLS . 39
run, SVD . 39
running model . 11

S
select flag . 15
‘selseq.kumac’ . 15, 47
‘sens.data’ . 29
sensitivities. 28
sensitivity, output . 29
sequence . 3
sequences . 3
‘sigma.data’ . 29
Singular Value Decomposition 38
‘sltc.exe’ . 38, 39
‘sltcirc.exe’ . 39
smod . 38, 39
starting point. 7
state matrix . 38
SVD . 38
SVD output . 39

SVD run . 39

T
TEF . 1, 3
title file . 8
‘title.tex’ . 8
‘title.tex’, GTLS . 39
‘title.tex’, SVD . 39
‘tr.data’ . 11
transfers . 1

U
up node . 17
‘uxcom.data’ . 31
‘uycom.data’ . 31

V
variance-covariance error . 35
variance-covariance matrices 34
variance-covariance matrices, general 33
variance-covariance matrix on state 34

Z
‘zcmd_law’ . 31
‘zcmd_law.inc’ . 31
‘zinit’ . 4
zinit, general . 3
‘zinit’, Kalman filter . 34
‘zinit.mti’ . 9
ZOOM . 1
‘zsteer’. 12
‘zsteer’, Kalman filter . 35
‘zsteer.inc’ . 12

Variables, macros and functions index 45

Variables, macros and functions index

A
aspha . 13

B
Bb . 13
Bt . 13

C
couplage(.) . 13
cout_l . 32
cout_Psi . 32
covana(.,.) . 36
coveta(.,.) . 35
covfor(.,.) . 34
covobs(.,.) . 35

D
D . 13
d_pi_aspha(.,.) . 30
dEta(.) . 11
deta_tef(.) . 25
dneta . 13
dphi . 13
dt . 4, 12

E
eqn: . 6
eta(.) . 7
eta(.), explicit sizes . 25
etafor(.) . 35

F
f_set . 25, 26, 32
ff(.) . 7
ff(.), explicit sizes . 25
ffl(.) . 13
Free_parameter . 23
fun: . 6

H
H . 13

I
index_ff_gain . 36
innobs(.) . 35
istep . 13

istep_B_deb . 37
istep_B_fin . 37
istep_B_inc . 37
itau_max . 37

K
kgain(.) . 35

M
m_dwn . 18
m_mult . 18
m_node . 18
m_up . 18
maxstep . 25
mereta(.,.) . 34
mobs . 24
model_file_name . 9
modzprint . 4, 14
mp . 7, 25

N
n_dwn . 17
n_mult . 17
n_node . 17
n_up . 17
np . 7, 25
nstep . 4

O
obspha(.,.) . 36

P
Phi_tef(.) . 25
principal . 16

S
set_dwn_eta . 18
set_dwn_phi . 18
set_eta . 6
set_node_eta . 20
set_node_Phi . 20
set_Phi . 6
set_up_eta . 18
set_up_phi . 18

Variables, macros and functions index 46

T
tau_B_ini . 37
tau_B_mult . 37
time . 4

V
var: . 6
vobs(.) . 24, 35

Z
zback . 32

ZBorel . 36

zborel for . 38

zcommand . 31

zgetobs . 24, 35

zkalman . 33

zlaw . 31

zprint . 14

Appendix A: Installation 47

Appendix A Installation

A.1 Programming environments

Miniker is not a traditionnal software in that it isn’t a library or an interpreter but rather
a set of source and macro file that combines with the user model code and enable to build
a binary program corresponding with the model. It requires a build environment with a
preprocessor, a compiler and facilities that automate these steps.

Two different environment are proposed. One use cmz (http://wwwcmz.web.cern.ch/
wwwcmz/index.html), while the other is based on make. Other libraries are needed, the
CERN Program Library (cernlib) and lapack.

A.2 Common requisites

Whatever method is used a fortran 77 compiler is required. The compilers that have been
used so far are g77, gfortran and the sun solaris compiler.

When usng CMZ, the CERN Program Library, available at http://wwwasd.web.cern.ch/
wwwasd/cernlib/, has to be installed. With make, internal source files copied from the
cernlib may be used instead but then some examples won’t be available, since they rely
on some mathematical functions provided by the CERN library. On windows, in case you
want to use the compiler from the GNU compiler collection with cygwin or MINGW/MSYS
you can use the binaries provided at http://zyao.home.cern.ch/zyao/cernlib.html.
On Mac OS X, the cernlib provided by fink (package cernlib-devel) can be used.

You should also have LAPACK, available at http://www.netlib.org/lapack/.
LAPACK can also be installed as part of the CERN Library or as part of the
http://math-atlas.sourceforge.net/ implementation. On most linux distributions a lapack
package is available. On Mac OS X, the ATLAS implementation provided by fink or the
frameworks from Xcode can be used.

A.3 Miniker with cmz

First of all you have to get the cmz file ‘mini_ker.cmz’ and put it in a directory. In that
same directory you should create a directory for each of your models. In the model directory
you should copy the file ‘selseq.kumac’ available with Miniker, and create your own cmz
file for your model, called for example ‘mymodel.cmz’. You should also have installed the
kumac macro files handling mortan compilation, the associated shell scripts and the mortran
preprocessor.

A.4 Miniker with make

A.4.1 Additional requirements for Miniker with make

The package has been tested with GNU make and solaris make.
Suitable preprocessors should also be installed. Two preprocessors are required,

one that preprocess the cmz directives, and a mortran preprocessor. A cmz direc-
tives processor written in perl, is distributed in the car2txt package available at
http://www.environnement.ens.fr/perso/dumas/mini_ker/software.html. A

http://wwwcmz.web.cern.ch/penalty z@ wwwcmz/index.html
http://wwwcmz.web.cern.ch/penalty z@ wwwcmz/index.html
http://wwwasd.web.cern.ch/penalty z@ wwwasd/cernlib/
http://wwwasd.web.cern.ch/penalty z@ wwwasd/cernlib/
http://zyao.home.cern.ch/penalty z@ zyao/cernlib.html
http://www.netlib.org/penalty z@ lapack/
ATLAS
http://www.environnement.ens.fr/penalty z@ perso/penalty z@ dumas/penalty z@ mini_ker/penalty z@ software.html

Appendix A: Installation 48

mortran package with a command able to preprocess a mortran file given on the command
line with a syntax similar with the cpp command line syntax is also required. Such a
mortran is available at http://www.environnement.ens.fr/perso/dumas/mini_ker/
software.html.

A.4.2 Configuration

The package is available at http://www.environnement.ens.fr/perso/dumas/mini_ker/
software.html. It is available as a compresssed tar archive. On UNIX, with GNU tar it
may be unpacked using

$ tar xzvf mini_ker-1.02.00.3.tar.gz

The detection of the compiler, the preprocessors (car2txt and mortran), and the libraries
are performed by the configure script. This script sets the apropriate variables in makefiles.
It can be run with:

$ cd mini_ker-1.02.00.3
$./configure

If the output of ./configure doesn’t show any error it means that all the components
are here. It is possible to give ./configure switches and also specify environment variables
(see also ./configure --help):

--disable-cernlib
Use the internal cernlib source files, even if a cernlib is detected.

--with-static-cernlib
This command line switch forces a static linking with the cernlib (or a dynamic
linking if set to no).

--with-cernlib
This command line switch can be used to specify the cernlib location (if not
detected or you want to use a specific cernlib).

--with-blas
--with-lapack

With this command switch, you can specify the location of the blas and lapack
libraries.
For example, on mac OS X this can be used to specify the blas and lapack from
the Apple frameworks:

./configure \
--with-blas=/System/Library/Frameworks/vecLib.framework/versions/A/vecLib \
--with-lapack=/System/Library/Frameworks/vecLib.framework/versions/A/vecLib

F77
FC
FFLAGS
LDFLAGS Classical compiler, compiler flags and linker flags.

MORTRAN This environment variable holds the mortran preprocessor command (default
is mortran).

MTNFLAGS This environment variable holds command line arguments for the mortran pre-
processor. It is empty in the default case.

http://www.environnement.ens.fr/penalty z@ perso/penalty z@ dumas/penalty z@ mini_ker/penalty z@ software.html
http://www.environnement.ens.fr/penalty z@ perso/penalty z@ dumas/penalty z@ mini_ker/penalty z@ software.html
http://www.environnement.ens.fr/penalty z@ perso/penalty z@ dumas/penalty z@ mini_ker/penalty z@ software.html
http://www.environnement.ens.fr/penalty z@ perso/penalty z@ dumas/penalty z@ mini_ker/penalty z@ software.html

Appendix A: Installation 49

MTN This environment variable may be used to specify the mortran executable name
and/or path, it should be used by the mortran commmand. (default is empty,
which leads to a mortran executable called mtn).

MTNDEPEND
This environment variable may be used to specify the mortran dependencies
checker executable. It should be used by the mortran commmand. (default is
empty, which leads to a mortran dependencies checker called mtndepend).

After a proper configuration, if make is run then the example models should be build.
You have to perform the configuration only once.

A.4.3 Installation with make

Miniker can be installed by running
make install

It should copy the sources and the ‘Makefile.miniker’ file in a ‘mini_ker’ directory
in the $(includedir) directory, and copy the templates in ‘$(datadir)/mini_ker’. The
default for $(includedir) is ‘/usr/local/include’ and the default for $(datadir) is
‘/usr/local/share’, these defaults may be changed by ./configure switches ‘--prefix’,
‘--includedir’ and ‘--datadir’. See ./configure --help and the ‘INSTALL’ file for more
informations. The helper script ‘start_miniker’ should also be installed.

The installation is not required to use comfortably Miniker. Indeed the only thing that
changes with the sources and the ‘Makefile.miniker’ directory location is the miniker_dir
variable in a project Makefile.

Appendix B: Cmz directives reference 50

Appendix B Cmz directives reference

The cmz directives are described together with the other features of cmz in the cmz manual
at http://wwwcmz.web.cern.ch/wwwcmz/, the important ones are nevertheless recalled
here, especially for those that use make and don’t need the whole features of cmz.

After the description of the generic features, we turn to the cmz directive of interest.
There are three kinds of cmz directives that are of use within Miniker: one kind that
introduce files, the other for conditionnal compilation and the third for sequence inclusion.

B.1 Cmz directives general syntax

The cmz directives always begin with a ‘+’ in the first column, optionnaly followed by any
number of ‘_’ that may be used for indentation, then the directive label, case insensitive, fol-
lowed by the directive arguments separated by ‘,’. The arguments are also case insensitive.
Optional spaces may be around directive arguments. An optionnal ‘.’ ends the directive
arguments and begin a comment, everything that follows that ‘.’ is ignored.

B.2 Conditional expressions

A directive argument common to all the directives is the conditionnal expression. A condi-
tionnal expression may be true or false, it is a combination of select flags. the select flags
are combined with logical operators. A select flag itself is true if it was selected. A select
flag selflag is selected by using the sel selflag instruction in cmz. It is selected by passing
the -D selflag command line switch to the call of the cmz directives preprocessor when
using make.

A ‘-’ negates the expression that follows. Parenthesis ‘(’ and ‘)’ are used for the grouping
of subexpressions. ‘|’ and ‘,’ are for the boolean or: an expression with a or is true if the
expression on the left or the expression on the right of the or is true. ‘&’ is for the boolean
and: an expression with an and is true if the expression on the left and the expression on
the right are true.

The grouping is left to right when there is no parenthesis, with or and ‘&’ having the
same precedence. Therefore

a&b|c ≡ (a&b)|c
a|b&c ≡ (a|b)&c
a|b&c is not a|(b&c)
a&b|c is not a&(b|c)

B.3 File introduction directives

A file (or sequence) introduction directive appears at the beginning of the file. There
are two different directives, one is DECK for normal files, the other is KEEP for include files
(sequences). The first argument is the name of the file. The file name may not be larger than
32 characters and is converted to lower case in the general case. The optionnal following
arguments may be of 2 type (and may be mixed, separated by ‘,’):

conditional
A conditionnal is introduced by IF= followed by a conditionnal expression de-
scribed in Section B.2 [Conditional expressions], page 50. The file is prepro-
cessed if the conditionnal expression is true.

http://wwwcmz.web.cern.ch/wwwcmz/

Appendix B: Cmz directives reference 51

language specification
A language specification is introduced by a T=. The most common languages are
‘mtn’ for the mortran, ‘ftn’ for fortran not preprocessed, ‘f77’ for preprocessed
fortran, ‘c’ for the c language and ‘txt’ for text files. In general the language
of the file determines the name of files the preprocessed file is extracted to, the
comment style and the command for inclusions.

It is a common practice to have wrong language type in KEEP as the language may be
determined from the DECK that include them with cmz, or from their file name with make.
This is not recommended and considered a bad practice.

Such a directive will always appear in cmz, as it is built-in. It is recommended to have
one when using make too, even though it is not required in most cases. Indeed make uses
the file name directly and finds the language and file type by looking at the file extension.
make should then pass the language type with a --lang lang command line switch when
calling the cmz directives preprocessor. With make, the convention is to have ‘cm’ added
before the normal file suffix and after the ‘.’. The table table 3.2 shows the matching
between suffixes, file type and file language.

For example, a file beginning with

+Deck, subroutine_foo, If=monitor&-simple, T=f77.

is a main preprocessed fortran file that will only be generated if ‘monitor’ is selected
and ‘simple’ is not selected. The file to be preprocessed by make should have the ‘.cmF’
suffix, and be called ‘subroutine_foo.cmF’.

A file beginning with

+KEEP,inc_common,If=monitor|interface,T=mtn

is an mortran include file that should be processed only if ‘monitor’ or ‘interface’ is
selected. The file to be preprocessed by make should have the ‘cmmti’ suffix and be called
‘inc_common.cmmti’. The resulting file when make is used will be called ‘inc_common.mti’.

B.4 Conditional directives

Conditional directives may be used to conditionnaly skip blocks of code. There are 4
conditional directives: if, elseif, else and endif. +if begins a conditional directives
sequence, with argument a conditional expression. If the expression is true the block of
code following the +if is output in the resulting file, up to another conditional directive, if
it is false the code block is skipped. If the expression is false and the following conditional
directive is +elseif, the same procedure is followed with the argument of +elseif which
is also a conditionnal expression. More than one +elseif may follow a +if. If a +if or
+elseif expression is true the following code block is output and all the following +elseif
code blocks are skipped. If all the +if and +elseif expressions are false and the following
coditionnal directive is +else then the block following the +else is output. If a previous
expression was true the code block following the +else is skipped. The last code block is
closed by +endif.

Conditionnal directives may be nested, a +if begins a deeper conditionnal sequences
directives that is ended by the corresponding +endif.

The simplest example is:

Appendix B: Cmz directives reference 52

some code;
+IF,monitor

code output only if monitor is true;
+ENDIF

If ‘monitor’ is selected, the +if block is output, it leads to

some code;
code output only if monitor is true;

If ‘monitor’ isn’t selected the +if block is skipped, it leads to

some code;

An example with +else may be:

+IF,double
call dmysub(eta);
+ELSE
call smysub(eta);
+ENDIF

If ‘double’ is selected the code output is call dmysub(eta);, if ‘double’ isn’t selected
the code output is call dmysub(eta);.

Here is a self explanatory example of use of +elseif:

+IF,monitor
code used if monitor is selected;

+ELSEIF,kalman
code used if kalman is selected and monitor is not;

+ELSE
code used if kalman and monitor are not selected;

+ENDIF

And last an example of nested conditional directives:

+IF,monitor
code used if monitor is selected;

+_IF,kalman. deep if
code used if monitor and kalman are selected;

+_ELSE. deep else
code used if monitor is selected and kalman is not;

+_ENDIF. end the deep conditionnals sequence
+ELSE
code used if monitor is not selected;

+_IF,kalman
code used if monitor is not selected but kalman is;

+_ELSE
code used if monitor and kalman are not selected;

+_ENDIF
other code used if monitor is not selected;

+ENDIF

Appendix B: Cmz directives reference 53

B.5 File inclusion directive

The file (sequence) inclusion directive is seq. The argument of seq is an include files ‘,’
separated list. The include files are Keep in cmz. The following optional arguments may be
mixed:

conditional
A conditionnal is introduced by IF= followed by a conditionnal expression de-
scribed in Section B.2 [Conditional expressions], page 50. The directive is ig-
nored if the conditionnal expression is false.

T=noinclude
When this argument is present the text of the sequence will always be included
in the file where the +seq appears.

When there is no T=noinclude argument, the +seq directive may be replaced with an
inclusion command suitable for the language of the file being processed, if such command
has been specified.

For example if we have the following sequence
+KEEP,inc,lang=C
typedef struct incstr {char* msg};

And the following code in the file being processed:
+DECK,mainf,lang=C
+SEQ,inc
int main (int argc, char* argv) { exit(0); }

the processing of ‘mainf’ should lead to the file ‘mainf.c’, containing an include com-
mand for ‘inc’:
#include "inc.h"
int main (int argc, char* argv) { exit(0); }

In case the +seq has the T=noinclude:
+DECK,mainf,lang=C
+SEQ,inc,T=noinclude
int main (int argc, char* argv) { exit(0); }

The processing of ‘mainf’ should lead to the file ‘mainf.c’ containing the text of ‘inc’:
typedef struct incstr {char* msg};
int main (int argc, char* argv) { exit(0); }

B.6 The ‘self’ directive

The self directive is an obsolete directive that may be used for conditionnal skipping of
code. For a better approach see Section B.4 [Conditional directives], page 51. The option-
nal argument of +SELF is If= followed by a conditionnal expression. If the conditionnal
expression is true the code following the directive is output, if it is false the code is skipped
up to any directive (including another +SELF) except +seq.

Appendix C: Copying This Manual 54

Appendix C Copying This Manual

C.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix C: Copying This Manual 55

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: Copying This Manual 56

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix C: Copying This Manual 57

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: Copying This Manual 58

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: Copying This Manual 59

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Copying This Manual 60

C.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Intended audience
	Reading guide
	Other Manuals and documentation

	An overview of the TEF formalism
	Cell and Transfer equations
	Linearization and discretization in the TEF

	Miniker model programming
	General structure of the code
	Miniker programming illustrated
	All you need to know about mortran and cmz directives
	Entering model equation and parameters

	Setting and running a model
	Setup a model and compile with cmz
	Setup a model and compile with make
	Running a simulation and using the output
	Doing graphics

	Controlling the run
	Executing code at the end of each time step
	Controlling the printout and data output

	Advanced Miniker programming
	Overview of additional features setting
	Calling the model code
	Turning the model into a subroutine
	Calling the model subroutine

	Describing 1D gridded model
	Setting dimensions for 1D gridded model
	1D gridded Model coding

	Double precision
	Partial Derivatives
	Derivating a power function

	Rule of programming non continuous models
	Parameters
	Observations and data
	Observations

	Entering model size explicitely
	The explicit size sequence
	Entering the model equations, with explicit sizes

	Programming with cmz directives
	Cmz directives used with Miniker
	Using cmz directives in Miniker

	Dynamic analysis of systems in Miniker
	Automatic sensitivity computation
	Sensitivity to a parameter
	Advance matrix sensitivity

	Adjoint model and optimisation with Miniker
	Overview of optimisation with Miniker
	Control laws
	Cost function coding and adjoint modeling
	Sensitivity of cost function to parameters

	Kalman filter
	Coding the Kalman filter
	Kalman filter vectors dimensions
	Error and observation matrices

	Kalman filter run and output
	Feeding the observations to the model
	Kalman filter results

	Executing code after the analysis
	Data

	Feedback gain
	Specifying the Borel sweep
	Borel sweep results

	Stability analysis of fastest modes
	Singular Value Decomposition with cmz
	Singular Value Decomposition with make
	Singular Value Decomposition run and output

	Generalized linear tangent system analysis
	Generalized tangent linear system with cmz
	Generalized tangent linear system with make
	Generalized tangent linear system analysis run and output

	Advanced use of Miniker with make
	Make variables
	Rules
	Linking rule

	Concepts index
	Variables, macros and functions index
	Installation
	Programming environments
	Common requisites
	Miniker with cmz
	Miniker with make
	Additional requirements for Miniker with make
	Configuration
	Installation with make

	Cmz directives reference
	Cmz directives general syntax
	Conditional expressions
	File introduction directives
	Conditional directives
	File inclusion directive
	The self directive

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

